TY - JOUR A1 - Marquardt, André A1 - Landwehr, Laura-Sophie A1 - Ronchi, Cristina L. A1 - di Dalmazi, Guido A1 - Riester, Anna A1 - Kollmannsberger, Philip A1 - Altieri, Barbara A1 - Fassnacht, Martin A1 - Sbiera, Silviu T1 - Identifying New Potential Biomarkers in Adrenocortical Tumors Based on mRNA Expression Data Using Machine Learning JF - Cancers N2 - Simple Summary Using a visual-based clustering method on the TCGA RNA sequencing data of a large adrenocortical carcinoma (ACC) cohort, we were able to classify these tumors in two distinct clusters largely overlapping with previously identified ones. As previously shown, the identified clusters also correlated with patient survival. Applying the visual clustering method to a second dataset also including benign adrenocortical samples additionally revealed that one of the ACC clusters is more closely located to the benign samples, providing a possible explanation for the better survival of this ACC cluster. Furthermore, the subsequent use of machine learning identified new possible biomarker genes with prognostic potential for this rare disease, that are significantly differentially expressed in the different survival clusters and should be further evaluated. Abstract Adrenocortical carcinoma (ACC) is a rare disease, associated with poor survival. Several “multiple-omics” studies characterizing ACC on a molecular level identified two different clusters correlating with patient survival (C1A and C1B). We here used the publicly available transcriptome data from the TCGA-ACC dataset (n = 79), applying machine learning (ML) methods to classify the ACC based on expression pattern in an unbiased manner. UMAP (uniform manifold approximation and projection)-based clustering resulted in two distinct groups, ACC-UMAP1 and ACC-UMAP2, that largely overlap with clusters C1B and C1A, respectively. However, subsequent use of random-forest-based learning revealed a set of new possible marker genes showing significant differential expression in the described clusters (e.g., SOAT1, EIF2A1). For validation purposes, we used a secondary dataset based on a previous study from our group, consisting of 4 normal adrenal glands and 52 benign and 7 malignant tumor samples. The results largely confirmed those obtained for the TCGA-ACC cohort. In addition, the ENSAT dataset showed a correlation between benign adrenocortical tumors and the good prognosis ACC cluster ACC-UMAP1/C1B. In conclusion, the use of ML approaches re-identified and redefined known prognostic ACC subgroups. On the other hand, the subsequent use of random-forest-based learning identified new possible prognostic marker genes for ACC. KW - adrenocortical carcinoma KW - in silico analysis KW - machine learning KW - bioinformatic clustering KW - biomarker prediction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246245 SN - 2072-6694 VL - 13 IS - 18 ER - TY - JOUR A1 - März, Juliane A1 - Kurlbaum, Max A1 - Roche-Lancaster, Oisin A1 - Deutschbein, Timo A1 - Peitzsch, Mirko A1 - Prehn, Cornelia A1 - Weismann, Dirk A1 - Robledo, Mercedes A1 - Adamski, Jerzy A1 - Fassnacht, Martin A1 - Kunz, Meik A1 - Kroiss, Matthias T1 - Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors JF - Frontiers in Endocrinology N2 - Context Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines. By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. Conclusions The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability. KW - adrenal KW - pheochromocytoma KW - paraganglioma KW - targeted metabolomics KW - mass spectronomy KW - catecholamines KW - machine learning KW - feature selection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245710 SN - 1664-2392 VL - 12 ER -