TY - JOUR A1 - Rivero, O A1 - Selten, MM A1 - Sich, S A1 - Popp, S A1 - Bacmeister, L A1 - Amendola, E A1 - Negwer, M A1 - Schubert, D A1 - Proft, F A1 - Kiser, D A1 - Schmitt, AG A1 - Gross, C A1 - Kolk, SM A1 - Strekalova, T A1 - van den Hove, D A1 - Resink, TJ A1 - Kasir, N Nadif A1 - Lesch, KP T1 - Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition JF - Translational Psychiatry N2 - Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. KW - genome-wide association KW - deficit hyperactivity disorder KW - psychiatric disorders KW - neurodevelopmental disorders KW - synaptic plasticity KW - response inhibition KW - positive interneurons KW - T-cadherin KW - long-term potentiation KW - attention deficit/hyperactivity disorder Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145218 VL - 5 IS - e655 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Popp, Sandy A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Göppner, Corinna A1 - Post, Antonia A1 - Reif, Andreas A1 - van den Hove, Daniel A1 - Strekalova, Tatyana A1 - Schmitt, Angelika A1 - Colaςo, Maria B. N. A1 - Sommer, Claudia A1 - Palme, Rupert A1 - Lesch, Klaus-Peter T1 - Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice JF - Psychopharmacology N2 - Rationale While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Objective Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Results Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2\(^{−/−}\)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2\(^{−/−}\) males displayed increased impulsivity and high aggressiveness. Tph2\(^{−/−}\) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2\(^{−/−}\) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Conclusions Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality. KW - Serotonin KW - Tryptophan hydroxylase-2 (Tph2) KW - chronic stress KW - gene-by-environment interaction KW - anxiety KW - fear KW - depression KW - aggression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154586 VL - 232 SP - 2429 EP - 2441 ER - TY - JOUR A1 - Cline, Brandon H. A1 - Costa-Nunes, Joao P. A1 - Cespuglio, Raymond A1 - Markova, Natalyia A1 - Santos, Ana I. A1 - Bukhman, Yury V. A1 - Kubatiev, Aslan A1 - Steinbusch, Harry W. M. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression JF - Frontiers in Behavioral Neuroscience N2 - Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. KW - phosphorylated glycogen synthase kinase-3beta (pGSK-3beta) KW - hippocampal plasticity KW - sleep EEG KW - aging KW - NMDA receptor subunits NR2A and NR2B KW - dicholine succinate KW - insulin receptor KW - chronic stress Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143992 VL - 9 IS - 37 ER - TY - JOUR A1 - Bodden, Carina A1 - Richter, S. Helene A1 - Schreiber, Rebecca S. A1 - Kloke, Vanessa A1 - Gerß, Joachim A1 - Palme, Rupert A1 - Lesch, Klaus-Peter A1 - Lewejohann, Lars A1 - Kaiser, Sylvia A1 - Sachser, Norbert T1 - Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype JF - Frontiers in Behavioral Neuroscience N2 - Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HIT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered. KW - anxiety-like behavior KW - maternal care KW - dangerous world KW - animal behavior KW - match-mismatch KW - chronic social stress KW - elevated plus-maze KW - 5-HTT KW - life history KW - predictive adaptive response hypothesis KW - developmental plasticity KW - knockout mice KW - environmental enrichment KW - allostatic load Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143723 VL - 9 IS - 47 ER -