TY - JOUR A1 - Habenstein, Jens A1 - Amini, Emad A1 - Grübel, Kornelia A1 - el Jundi, Basil A1 - Rössler, Wolfgang T1 - The brain of Cataglyphis ants: Neuronal organization and visual projections JF - Journal of Comparative Neurology N2 - Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far‐reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision‐based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three‐dimensional neuronal map of synapse‐rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function. KW - 3D reconstruction KW - ant brain KW - antennal lobes KW - central complex KW - insect KW - mushroom bodies KW - optical tracts Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218212 VL - 528 IS - 18 SP - 3479 EP - 3506 ER - TY - THES A1 - Amini, Emad T1 - How central and peripheral clocks and the neuroendocrine system interact to time eclosion behavior in \(Drosophila\) \(melanogaster\) T1 - Wie zentrale und periphere Uhren und das neuroendokrine System zusammenwirken, um das Schlupfverhalten von \(Drosophila\) \(melanogaster\) zeitlich festzulegen N2 - To grow larger, insects must shed their old rigid exoskeleton and replace it with a new one. This process is called molting and the motor behavior that sheds the old cuticle is called ecdysis. Holometabolic insects have pupal stages in between their larval and adult forms, during which they perform metamorphosis. The pupal stage ends with eclosion, i.e., the emergence of the adult from the pupal shell. Insects typically eclose at a specific time during the day, likely when abiotic conditions are at their optimum. A newly eclosed insect is fragile and needs time to harden its exoskeleton. Hence, eclosion is regulated by sophisticated developmental and circadian timing mechanisms. In Drosophila melanogaster, eclosion is limited to a daily time window in the morning, regarded as the “eclosion gate”. In a population of laboratory flies entrained by light/dark cycles, most of the flies eclose around lights on. This rhythmic eclosion pattern is controlled by the circadian clock and persists even under constant conditions. Developmental timing is under the control of complex hormonal signaling, including the steroid ecdysone, insulin-like peptides, and prothoracicotropic hormone (PTTH). The interactions of the central circadian clock in the brain and a peripheral clock in the prothoracic gland (PG) that produces ecdysone are important for the circadian timing of eclosion. These two clocks are connected by a bilateral pair of peptidergic PTTH neurons (PTTHn) that project to the PG. Before each molt, the ecdysone level rises and then falls shortly before ecdysis. The falling ecdysone level must fall below a certain threshold value for the eclosion gate to open. The activity of PTTHn is inhibited by short neuropeptide F (sNPF) from the small ventrolateral neurons (sLNvs) and inhibition is thought to lead to a decrease in ecdysone production. The general aim of this thesis is to further the understanding of how the circadian clock and neuroendocrinal pathways are coordinated to drive eclosion rhythmicity and to identify when these endocrinal signaling pathways are active. In Chapter I, a series of conditional PTTHn silencing-based behavioral assays, combined with neuronal activity imaging techniques such as non-invasive ARG-Luc show that PTTH signaling is active and required shortly before eclosion and may serve to phase-adjust the activity of the PG at the end of pupal development. Trans-synaptic anatomical stainings identified the sLNvs, dorsal neurons 1 (DN1), dorsal neurons 2 (DN2), and lateral posterior neurons (LPNs) clock neurons as directly upstream of the PTTHn. Eclosion motor behavior is initiated by Ecdysis triggering hormone (ETH) which activates a pair of ventromedial (Vm) neurons to release eclosion hormone (EH) which positively feeds back to the source of ETH, the endocrine Inka cells. In Chapter II trans-synaptic tracing showed that most clock neurons provide input to the Vm and non-canonical EH neurons. Hence, clock can potentially influence the ETH/EH feedback loop. The activity profile of the Inka cells and Vm neurons before eclosion is described. Vm and Inka cells are active around seven hours before eclosion. Interestingly, all EH neurons appear to be exclusively peptidergic. In Chapter III, using chemoconnectomics, PTTHns were found to express receptors for sNPF, allatostatin A (AstA), allatostatin C (AstC), and myosuppressin (Ms), while EH neurons expressed only Ms and AstA receptors. Eclosion assays of flies with impaired AstA, AstC, or Ms signaling do not show arrhythmicity under constant conditions. However, optogenetic activation of the AstA neurons strongly suppresses eclosion. Chapter IV focuses on peripheral ventral’ Tracheal dendrite (v’Td) and class IV dendritic arborization (C4da) neurons. The C4da neurons mediate larval light avoidance through endocrine PTTH signaling. The v’Td neurons mainly receive O2/CO2 input from the trachea and are upstream of Vm neurons but are not required for eclosion rhythmicity. Conditional ablation of the C4da neurons or torso (receptor of PTTH) knock-out in the C4da neurons impaired eclosion rhythmicity. Six to seven hours before eclosion, PTTHn, C4da, and Vm neurons are active based on ARG-Luc imaging. Thus, C4da neurons may indirectly connect the PTTHn to the Vm neurons. In summary, this thesis advances our knowledge of the temporal activity and role of PTTH signaling during pupal development and rhythmic eclosion. It further provides a comprehensive characterization of the synaptic and peptidergic inputs from clock neurons to PTTHn and EH neurons. AstA, AstC, and Ms are identified as potential modulators of eclosion circuits and suggest an indirect effect of PTTH signaling on EH signaling via the peripheral sensory C4da neurons. N2 - Um zu wachsen, müssen Insekten ihr altes, starres Exoskelett abwerfen und durch ein neues ersetzen. Dieser Vorgang wird als Häutung bezeichnet, und das motorische Verhalten, bei dem die alte Kutikula abgestoßen wird, heißt Ekdysis. Holometabole Insekten haben zwischen ihrer Larven- und Erwachsenenform ein Puppenstadium, in welchem sie eine Metamorphose durchlaufen. Das Puppenstadium endet mit dem Schlüpfen des erwachsenen Tieres aus der Puppenhülle. Die Insekten schlüpfen in der Regel zu einem bestimmten Zeitpunkt am Tag, wenn die abiotischen Bedingungen optimal sind, da das frisch geschlüpfte Insekt zerbrechlich ist und Zeit braucht, um sein Exoskelett auszuhärten. Daher wird der Schlupf durch ausgeklügelte Mechanismen der Entwicklung und der inneren Uhr gesteuert. Bei Drosophila melanogaster ist der Sclupf auf ein tägliches Zeitfenster am Morgen beschränkt, das als "Schlupffenster" bezeichnet wird. In einer Population von Laborfliegen, die durch Licht/Dunkel-Zyklen gesteuert wird, schlüpfen die meisten Fliegen in etwa um das Einschalten der Beleuchtung. Dieses rhythmische Schlupfmuster wird von der inneren Uhr gesteuert und bleibt auch unter konstanten Bedingungen bestehen. Das Timing der Entwicklung wird von komplexen hormonellen Signalen gesteuert, darunter das Steroid Ecdyson, insulinähnliche Peptide und das prothorakotrope Hormon (PTTH). Die Wechselwirkungen zwischen der zentralen zirkadianen Uhr im Gehirn und einer peripheren Uhr in der Prothorakaldrüse (PG), die Ecdyson produziert, sind wichtig für die zirkadiane Zeitsteuerung des Schlupfs. Diese beiden Uhren sind durch ein bilaterales Paar peptiderger PTTH-Neuronen (PTTHn) verbunden, die in die PG projizieren. Vor jeder Häutung steigt der Ecdysonspiegel an und fällt dann kurz vor danach wieder ab. Der fallende Ecdysonspiegel muss einen bestimmten Schwellenwert unterschreiten, damit sich das Schlupffenster öffnen kann. Die Aktivität der PTTHn wird durch das kurze Neuropeptid F (sNPF) aus den kleinen ventrolateralen Neuronen (sLNvs) gehemmt, und es wird angenommen, dass die Hemmung zu einer Abnahme der Ecdysonproduktion führt. Das allgemeine Ziel dieser Thesis besteht darin, die Koordination zwischen der zirkadianen Uhr und den neuroendokrinen Signalwegen zur Steuerung der Eklosionsrhythmik weiter zu charakterisieren und zu ermitteln, wann diese endokrinen Signalwege aktiv sind. In Kapitel I zeigen eine Reihe von Verhaltenstests, die auf der konditionalen Ausschaltung von PTTHn basieren, in Kombination mit Techniken zur Darstellung neuronaler Aktivität, wie z. B. nicht-invasives ARG-Luc imaging, dass PTTH-Signale kurz vor dem Schlupf aktiv und erforderlich sind und zur Phasenanpassung der Aktivität der PG am Ende der Puppenentwicklung dienen könnten. Trans-synaptische anatomische Färbungen identifizierten die sLNvs, die dorsalen Neuronen 1 (DN1), die dorsalen Neuronen 2 (DN2) und die lateralen posterioren Neuronen (LPNs) als Uhrneuronen, die dem PTTHn direkt vorgeschaltet sind. Das motorische Schlupfverhalten wird durch das Ecdysis-auslösende Hormon (ETH) ausgelöst, das ein Paar ventromedialer (Vm) Neuronen zur Freisetzung des Eklosionshormons (EH) anregt, welches positiv an die Quelle des ETH, die endokrinen Inka-Zellen, zurückkoppelt. In Kapitel II zeigte die trans-synaptische Nachverfolgung, dass die meisten Uhrneuronen Input für die Vm- und nicht-kanonischen EH-Neuronen liefern, sodass die Uhr möglicherweise die ETH/EH-Rückkopplungsschleife beeinflussen kann. Das Aktivitätsprofil der Inka-Zellen und Vm-Neuronen vor dem Schlupf wird beschrieben. Vm- und Inka-Zellen sind etwa sieben Stunden vor dem Schlupf aktiv. Interessanterweise scheinen alle EH-Neuronen ausschließlich peptiderg zu sein. In Kapitel III wurde mit Hilfe von Chemoconnectomics festgestellt, dass PTTH-Neuronen Rezeptoren für sNPF, Allatostatin A (AstA), Allatostatin C (AstC) und Myosuppressin (Ms) exprimieren, während EH nur Ms- und AstA-Rezeptoren exprimieren. Eklosionsversuche mit Fliegen, deren AstA-, AstC- oder Ms-Signalübertragung beeinträchtigt ist, zeigen unter konstanten Bedingungen keine Arrhythmie. Eine optogenetische Aktivierung der AstA-Neuronen führt jedoch zu einer starken Unterdrückung des Schlupfs. Kapitel IV konzentriert sich auf die peripheren ventralen Trachealdendritischen Neurone (v'Td) und dendritische Verzweigungsneurone der Klasse IV (C4da). Die C4da-Neuronen vermitteln die Lichtvermeidung der Larven durch endokrine PTTH-Signale. Die v'Td-Neuronen erhalten hauptsächlich O2/CO2-Input aus den Tracheen und sind den Vm-Neuronen vorgeschaltet, werden aber für die Schlupfrhythmik nicht benötigt. Die bedingte Ablation der C4da-Neuronen und das Knock-out von torso (Rezeptor für PTTH) in den C4da-Neuronen beeinträchtigten die Schlupfrhythmik. Sechs bis sieben Stunden vor dem Schlupf sind die PTTHn-, C4da- und Vm-Neuronen aktiv. Somit könnten C4da-Neuronen indirekt die PTTHn mit den Vm-Neuronen verbinden. Zusammenfassend lässt sich sagen, dass diese Arbeit unser Wissen über das zeitliche Aktivitätsmuster und der Rolle des PTTH signalling während der Puppenentwicklung und dem rhythmisches Schlupf erweitert. Sie liefert auch eine umfassende Charakterisierung der synaptischen und peptidergen Eingänge von Uhrneuronen zu PTTHn- und EH-Neuronen. AstA, AstC und Ms wurden als potenzielle Modulatoren der neuronalen Schlupfschaltkreise identifiziert und deuten auf einen indirekten Effekt der PTTH-Signalgebung auf das EH signalling über die peripheren sensorischen C4da-Neuronen hin. KW - Prothoracicotropic hormone KW - Prothoracic gland KW - Eclosion KW - Eclosion hormone KW - C4da KW - v’Td KW - Neuropeptide KW - Neuroendokrines System KW - Taufliege Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-361309 ER -