TY - THES A1 - Nuber, Susanne T1 - ß-Arrestin/Rezeptor-Interaktionen - Ein endogenes "Werkzeug" ligandenspezifischer Signaltransduktion T1 - ß-Arrestin/receptor-interactions - An endogenous "tool" of ligand-specific signal transduction N2 - Die Bedeutung der β-Arrestine als multifunktionelle Adapterproteine GPCR-vermittelter Signaltransduktion hat in den letzten Jahren immer mehr zugenommen. In der vorliegenden Arbeit lag der Schwerpunkt auf der Untersuchung der molekularen Basis und der Ligandenabhängigkeit sowohl der β-Arrestin/Rezeptor-Interaktion als auch β-Arrestin- (un-)abhängiger Signaltransduktionsmechanismen. Im ersten Teil wurde der Einfluß potentieller Phosphorylierungsstellen im C-Terminus des β2AR bzw. im C-Terminus und der TM3 des P2Y1R auf die agonisteninduzierte β-Arrestin/Rezeptor-Interaktion, Internalisierung und Desensibilisierung untersucht. Durch Mutationsanalysen konnten Ser 352/Thr 358 im distalen C-Terminus des P2Y1R als Schlüsselstellen der β-Arrestin-Translokation und Internalisierung identifiziert werden, während ein oder mehrere Phosphorylierungsstellen im proximalen P2Y1R C-Terminus die molekulare Grundlage der Rezeptordesensibilisierung darstellen. Darüber hinaus machte die Anwendung verschiedener PKC- oder CaMK-Inhibitoren sowie der Einsatz des PKC-Aktivators PMA deutlich, dass die P2Y1R-Desensibilisierung und β-Arrestin-Translokation durch unterschiedliche Kinasen kontrolliert werden. Zudem konnte mit Hilfe der FRET-Technik gezeigt werden, dass die Phosphorylierungsstellen zwischen den Positionen 355 und 364 im proximalen β2AR C-Terminus essentielle Bereiche der β-Arrestin-Translokation darstellen. Im zweiten Teil der vorliegenden Arbeit wurden Agonisten am β2-adrenergen Rezeptor bzw. dem P2Y2R auf ihre Fähigkeit hin untersucht verschiedene mit dem jeweiligen Rezeptor verknüpfte G-Protein- bzw. β-Arrestin-Funktionen in unterschiedlichem Ausmaß zu aktivieren („biased agonism“). Da eine solche ligandenselektive Aktivierung rezeptorvermittelter Signalwege bis dato nur mit synthetischen Liganden detailliert untersucht wurde, galt das besondere Interesse der Analyse der durch die endogenen Substanzen induzierten Signalmuster. Die Betrachtung der Noradrenalin- bzw. Adrenalin-induzierten β-Arrestin/Rezeptor-Interaktion, β-Arrestin2-Translokation, Rezeptorinternalisierung, G-Protein-Aktivierung sowie cAMP-Produktion am β2AR machte deutlich, dass es sich beim Phänomen des „biased agonism“ um einen endogenen Mechanismus handelt. Darüber hinaus konnte gezeigt werden, dass auch zur Tokolyse eingesetzte β2AR-Agonisten spezifische Signalmuster induzieren. Die Beobachtung, dass UTP und ATP sowohl unterschiedliche β-Arrestin1/2-Translokationsals auch ERK-Aktivierungsmuster am P2Y2R induzieren bestärkte das Konzept des „biased agonism“ als endogenes Phänomen. Das ligandenabhängige β-Arrestin-Translokationsverhalten des P2Y2R ließ zudem die agonistenbedingte Zuteilung des Rezeptors zu den „Klasse A“ oder „Klasse B“ Rezeptoren zu. Die detaillierte Untersuchung agonisteninduzierter Rezeptor/Effektor-Interaktionen und Signalmuster dürfte helfen die Anwendung klinisch relevanter Substanzen zu optimieren. N2 - In recent years, the significance of β-arrestins as multifunctional adapter proteins of GPCR mediated signal transduction has steadily been increasing. In this thesis the main focus is to research the molecular basis and the ligand dependence of the β-arrestin recruitment as well as β-arrestin-(in-)dependent signal transduction mechanisms. In the first part, the influence of potential phosphorylation sites in the C-terminus of the β2AR or the C-terminus and the TM3 of the P2Y1R, respectively, on the agonist-induced β-arrestin2/receptor-interaction, receptor internalization and desensitization was examined. Using mutation analysis, Ser 352 and Thr 358 were identified as key points of the β-arrestin2 translocation and receptor internalization in the distal C-terminus of the P2Y1R. In contrast, one or more phosphorylation sites in the proximal P2Y1R C-terminus represent the molecular basis of receptor desensitization. In addition, the use of different PKC- or CaMK inhibitors and the application of the PKC activator PMA made it clear that the P2Y1R desensitization and β-arrestin translocation are controlled by different kinases. Using the FRET technique we were able to show that the phosphorylation sites between position 355 and 364 in the proximal C-terminus of the β2AR represent essential areas of the β-arrestin2 translocation. In the second part of the study at hand, agonists of the β2AR or the P2Y2R were examined with respect to their ability to activate distinct receptor associated G-protein or β-arrestin functions to varying degrees (“biased agonism”). Since this kind of ligandselective activation of receptor-mediated signaling pathways has only been studied in detail with synthetic ligands to this day, special interest in the analysis of the signaling pattern induced by the endogenous substances was taken. The analysis of norepinephrine- or epinephrine-induced β-arrestin/receptor interaction, β-arrestin translocation, receptor internalization, G-protein activation and cAMP production at the β2AR made clear that “biased agonism” is an endogenous phenomenon. Moreover, it has also been shown that β2AR agonists used for tocolysis induced a specific signaling pattern. The observation that UTP and ATP both induce different β-arrestin translocation as well as ERK activation patterns at the P2Y2R confirmed the concept of “biased agonism” as an endogenous phenomenon. The ligand dependent β-arrestin behavior of the P2Y2R also allowed the allocation of the receptor to the “class A” or “class B” receptors depending on the agonist used for stimulation. The detailed testing of agonist induced receptor/effector interactions and signaling pattern could help to optimize the application of clinically relevant substances. KW - G-Protein gekoppelte Rezeptoren KW - Adaptorproteine KW - Beta-Rezeptor KW - Noradrenalin KW - Adrenalin KW - Purinozeptor KW - ADP KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Konfokale Mikroskopie KW - biased agonism KW - functional selectivity Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53188 ER - TY - THES A1 - El Merahbi, Rabih T1 - Adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation T1 - Der adrenerge induzierte ERK3-Signalweg verstärkt Lipolyse und unterdrückt Energiedissipation N2 - Obesity-induced diabetes affects over 400 million people worldwide. Obesity is a complex metabolic disease and is associated with several co-morbidities, all of which negatively affect the individual’s quality of life. It is commonly considered that obesity is a result of a positive energy misbalance, as increased food intake and lower expenditure eventually lead to the development of this disease. Moreover, the pathology of obesity is attributed to several genetic and epigenetic factors that put an individual at high risk compared to another. Adipose tissue is the main site of the organism’s energy storage. During the time when the nutrients are available in excess, adipocytes acquire triglycerides, which are released during the time of food deprivation in the process of lipolysis (free fatty acids and glycerol released from adipocytes). Uncontrolled lipolysis is the consequent event that contributes to the development of diabetes and paradoxically obesity. To identify the genetic factors aiming for future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the Extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrate that β-adrenergic stimulation stabilizes ERK3 leading to the formation of a complex with the co-factor MAP kinase-activated protein kinase 5 (MK5) thereby driving lipolysis. Mechanistically, we identify a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Moreover, we shed the light on our pharmacological approach in targeting ERK3/MK5 pathways using MK5 specific inhibitor. Already after 1 week of administering the inhibitor, mice showed signs of improvement of their metabolic fitness as showed here by a reduction in induced lipolysis and the elevation in the expression of thermogenic genes. Taken together, our data suggest that targeting the ERK3/MK5 pathway, a previously unrecognized signaling axis in adipose tissue, could be an attractive target for future therapies aiming to combat obesity-induced diabetes. N2 - Adipositas-induzierter Diabetes betrifft weltweit über 400 Millionen Menschen. Adipositas ist eine komplexe Stoffwechselerkrankung und geht mit mehreren Komorbiditäten einher, die sich alle negativ auf die Lebensqualität der Betroffenen auswirken. Es wird generell angenommen, dass Adipositas aus einem positiven Energieungleichgewicht resultiert, da eine erhöhte Nahrungsaufnahme und ein geringerer Verbrauch zu der Ausbildung dieser Krankheit führen. Darüber hinaus ist die Pathologie von Adipositas auf mehrere genetische und epigenetische Faktoren zurückzuführen, wodurch Individuen einem erhöhtem Risiko ausgesetzt sein können. Das Fettgewebe ist der vorwiegende Energiespeicher des Organismus. In Zeiten eines Nährstoffüberschusses speichern Adipozyten Triglyceride, die im Falle eines Nahrungsmangels durch den Prozess der Lipolyse in Form von freien Fettsäuren und Glycerin freigesetzt werden. Unkontrollierte Lipolyse ist ein Folgeereignis, welches zur Entwicklung von Diabetes und paradoxerweise zu Adipositas beiträgt. Um die genetischen Faktoren zu identifizieren, die in Zukunft therapeutische Angriffspunkte darstellen könnten, haben wir ein Hochdurchsatz-Screening durchgeführt und die extrazellulär regulierte Kinase 3 (ERK3) als Treffer identifiziert. Wir zeigen, dass β-adrenerge Stimulation ERK3 stabilisiert, was zur Bildung eines Komplexes mit dem Cofactor MAP-Kinase-aktivierte Proteinkinase 5 (MK5) führt und dadurch die Lipolyse vorantreibt. Mechanistisch identifizieren wir den Transkriptionsfaktor FOXO1, der dem ERK3/MK5-Signalweg nachgeschaltet ist und die Expression des wichtigsten lipolytischen Enzyms ATGL fördert. Darüber hinaus belegen wir, dass die gezielte Deletion von ERK3 in Maus-Adipozyten die Lipolyse hemmt, aber die Energiedissipation erhöht, den mageren Phänotyp fördert und Diabetes lindert. Außerdem nutzen wir einen pharmakologischen Ansatz durch Verwendung eines MK5 spezifischen Inhibitors, um auf den ERK3/MK5-Signalweg abzuzielen. Bereits eine Woche nach Verabreichung des Inhibitors zeigen Mäuse Anzeichen einer verbesserten metabolischen Fitness, die sich durch einer Verringerung der induzierten Lipolyse und eine verstärkte Expression von thermogenen Genen auszeichnet. Zusammenfassend legen unsere Daten nahe, dass der ERK3/MK5-Signalweg, eine zuvor nicht erkannte Signalachse im Fettgewebe, ein attraktiver Ansatzpunkt für zukünftige Therapien zur Bekämpfung von Adipositas-induziertem Diabetes sein könnte. KW - Metabolism KW - Lipolysis KW - Obesity KW - Adrenalin KW - ATGL KW - Foxo1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217510 ER -