TY - JOUR A1 - Molinas-González, Carlos R. A1 - Castro, Jorge A1 - González-Megías, Adela A1 - Leverkus, Alexandro B. T1 - Effects of post-fire deadwood management on soil macroarthropod communities JF - Forests N2 - Dead wood comprises a vast amount of biological legacies that set the scene for ecological regeneration after wildfires, yet its removal is the most frequent management strategy worldwide. Soil-dwelling organisms are conspicuous, and they provide essential ecosystem functions, but their possible affection by different post-fire management strategies has so far been neglected. We analyzed the abundance, richness, and composition of belowground macroarthropod communities under two contrasting dead-wood management regimes after a large wildfire in the Sierra Nevada Natural and National Park (Southeast Spain). Two plots at different elevation were established, each containing three replicates of two experimental treatments: partial cut, where trees were cut and their branches lopped off and left over the ground, and salvage logging, where all the trees were cut, logs were piled, branches were mechanically masticated, and slash was spread on the ground. Ten years after the application of the treatments, soil cores were extracted from two types of microhabitat created by these treatments: bare-soil (in both treatments) and under-logs (in the partial cut treatment only). Soil macroarthropod assemblages were dominated by Hemiptera and Hymenoptera (mostly ants) and were more abundant and richer in the lowest plot. The differences between dead-wood treatments were most evident at the scale of management interventions: abundance and richness were lowest after salvage logging, even under similar microhabitats (bare-soil). However, there were no significant differences between microhabitat types on abundance and richness within the partial cut treatment. Higher abundance and richness in the partial cut treatment likely resulted from higher resource availability and higher plant diversity after natural regeneration. Our results suggest that belowground macroarthropod communities are sensitive to the manipulation of dead-wood legacies and that management through salvage logging could reduce soil macroarthropod recuperation compared to other treatments with less intense management even a decade after application. KW - forest fire KW - burnt-wood KW - species richness KW - soil fauna KW - post-fire management Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193079 SN - 1999-4907 VL - 10 IS - 11 ER - TY - JOUR A1 - Leverkus, Alexandro B A1 - Gustafsson, Lena A1 - Lindenmayer, David B A1 - Castro, Jorge A1 - Rey Benayas, José María A1 - Ranius, Thomas A1 - Thorn, Simon T1 - Salvage logging effects on regulating ecosystem services and fuel loads JF - Frontiers in Ecology and the Environment N2 - Salvage logging, or logging after natural disturbances such as wildfires, insect outbreaks, and windstorms, is carried out to recover some of a forest's natural and/or economic capital. However, trade‐offs between management objectives and a lack of consensus on the ecological consequences of salvage logging impair science‐based decision making on the management of forests after natural disturbances. We conducted a global meta‐analysis of the impacts of salvage logging on regulating ecosystem services and on fuel loads, as a frequent post‐disturbance objective is preventing subsequent wildfires that could be fueled by the accumulation of dead trunks and branches. Salvage logging affected ecosystem services in a moderately negative way, regardless of disturbance type and severity, time elapsed since salvage logging, intensity of salvage logging, and the group of regulating ecosystem services being considered. However, prolonging the time between natural disturbance and salvage logging mitigated negative effects on regulating ecosystem services. Salvage logging had no overall effect on surface fuels; rather, different fuel types responded differently depending on the time elapsed since salvage logging. Delaying salvage logging by ~2–4 years may reduce negative ecological impacts without affecting surface fuel loads. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216111 VL - 18 IS - 7 SP - 391 EP - 400 ER - TY - JOUR A1 - Georgiev, Kostadin B. A1 - Chao, Anne A1 - Castro, Jorge A1 - Chen, Yan‐Han A1 - Choi, Chang‐Yong A1 - Fontaine, Joseph B. A1 - Hutto, Richard L. A1 - Lee, Eun‐Jae A1 - Müller, Jörg A1 - Rost, Josep A1 - Żmihorski, Michal A1 - Thorn, Simon T1 - Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities JF - Journal of Applied Ecology N2 - Salvage logging following natural disturbances may alter the natural successional trajectories of biological communities by affecting the occurrences of species, functional groups and evolutionary lineages. However, few studies have examined whether dissimilarities between bird communities of salvaged and unsalvaged forests are more pronounced for rare species, functional groups and evolutionary lineages than for their more common counterparts. We compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, covering a 17‐year period following wildfire or windstorm disturbances and subsequent salvage logging. We tested whether dissimilarities based on non‐shared species, functional groups and evolutionary lineages (a) decreased or increased over time and (b) the responses of rare, common and dominant species varied, by using a unified statistical framework based on Hill numbers and null models. We found that dissimilarities between bird communities caused by salvage logging persisted over time for rare, common and dominant species, evolutionary lineages and for rare functional groups. Dissimilarities of common and dominant functional groups increased 14 years post disturbance. Salvage logging led to significantly larger dissimilarities than expected by chance. Functional dissimilarities between salvaged and unsalvaged sites were lower compared to taxonomic and phylogenetic dissimilarities. In general, dissimilarities were highest for rare, followed by common and dominant species. Synthesis and applications. Our research demonstrates that salvage logging did not decrease dissimilarities of bird communities over time and taxonomic, functional and phylogenetic dissimilarities persisted for over a decade. We recommend resource managers and decision makers to reserve portions of disturbed forest to enable unmanaged post‐disturbance succession of bird communities, particularly to conserve rare species found in unsalvaged disturbed forests. KW - biodiversity KW - breeding season KW - forest management KW - harvesting KW - Hill numbers KW - natural disturbance KW - successional trajectory Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214887 VL - 57 IS - 6 SP - 1103 EP - 1112 ER -