TY - THES A1 - Nemec, Katarina T1 - Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs) T1 - Regulierung der Signalübertragung des Parathormon 1-Rezeptors (PTH1R) durch Rezeptoraktivitäts-modifizierende Proteine (RAMPs) N2 - The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design. N2 - G Protein-gekoppelte Rezeptoren (GPCRs) bilden die größte und pharmakologisch wichtigste Familie von Zelloberflächenrezeptoren, die zahlreiche (patho-)physiologische Prozesse im menschlichen Körper steuern. GPCRs übertragen während des Rezeptoraktivierungsprozesses extrazelluläre Signale in das Zellinnere, wo durch die extrazelluläre Stimulation Konformationsänderungen des Rezeptorkerns auslöst und die Bindung intrazellulärer Bindungspartner – G Proteine, G Protein-gekoppelte Rezeptorkinase und Arrestine - ermöglicht. Es handelt sich also um einen kritischen Prozess in der Signaltransduktion, der durch einige endogene Moleküle wie Ionen, Lipide oder andere Proteine moduliert werden kann und Auswirkungen auf nachgeschaltete Signalkaskaden hat. GPCRs bilden gewebeabhängige Oligomere mit ihren interagierenden Partnern, Rezeptor-Aktivitäts-modifizierende Proteinen (RAMPs), ubiquitär exprimierten Membranproteinen. Bekannt ist, dass sie die Ligandenbindung, die G- Protein-Kopplung, die nachgeschaltete Signalisierung, das Trafficking und das Recycling einiger GPCRs modulieren. Ihre Rolle im kritischsten Prozess der Signaltransduktion - der Rezeptoraktivierung - wurde jedoch nur begrenzt erforscht. Anhand des physiologisch und therapeutisch wichtigen Parathormon-Rezeptors (PTH1R), einem GPCR der Klasse B, wurden die Modulationseffekte von RAMPs auf den Prozess der Rezeptoraktivierung und ihre Folgen für die nachgeschaltete Signalübertragung analysiert. Hierzu wurden verschiedene optische Biosensoren zur Messung der Aktivierung des PTH1R und seiner Signalkaskade entwickelt und in verschiedenen Versuchsanordnungen eingesetzt, mit dem Ziel einen holistischen Blick auf die Interaktion zwischen PTH1R und RAMPs und ihre funktionellen Auswirkungen zu erhalten. Die Interaktion zwischen PTH1R und RAMPs erwies sich als besonders ausgeprägt für RAMP2, und RAMP2 zeigte eine spezifische allosterische Modulation der PTH1R-Konformation, sowohl im basalen als auch im Liganden- aktivierten Zustand. Ein einzigartiger voraktivierter oder (meta-stabiler) Zustand ermöglichte eine schnellere Rezeptoraktivierung auf Liganden-spezifische Weise. Außerdem beeinflusste RAMP2 die G Protein- und Nicht-G Protein-vermittelte Signalübertragung indem es die PTH-vermittelte Gi3-Signalempfindlichkeit und die Kinetik der cAMP-Akkumulation modulierte. Weiterhin erhöhte RAMP2 die Menge der β-Arrestin2-Rekrutierung an PTH1R auf Liganden-spezifische Weise. Dies könnte mit einer erhöhten zytosolischen ERK-Menge zusammenhängen, die hat sich von der nukleären ERK-Phosphorylierung unterscheidet. Um einen molekularen Mechanismus für die vorgestellten Ergebnisse vorzuschlagen, wurden mehrere strukturelle Modelle entwickelt und analysiert. Diese Arbeit liefert den Beweis, dass RAMP die GPCR-Aktivierung mit funktionellen Auswirkungen auf die zelluläre Signalübertragung reguliert. Die Ergebnisse sollten im Zusammenhang mit zellspezifischen Koexpressionsmustern interpretiert werden und können zur Entwicklung von fortschrittlichen Therapeutika positiv beitragen. Da GPCRs praktisch alle Zellfunktionen koordinieren und seit jeher wichtigen Angriffspunkten für Medikamente sind, tragen die vorgestellten Erkenntnisse zum universellen Verständnis der molekularen Mechanismen bei, die den menschlichen Körper orchestrieren. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - RAMP KW - PTH1R KW - FRET KW - BRET KW - pharmacology KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster Resonanz Energie Transfer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288588 ER - TY - THES A1 - Langenbruch, Lisa Marie T1 - Biolumineszenz Resonanz Energietransfer (BRET) zur Untersuchung der Dimerisierung des Mineralokortikoidrezeptors T1 - Bioluminescence resonance energy transfer (BRET) for the study of mineralocorticoid receptor dimerization N2 - Das Mineralokortikoid Aldosteron ist ein wichtiger Regulator der Salz- und Wasserhomöostase und damit auch des Blutdrucks. Seine physiologische Wirkung entfaltet es über den Mineralokortikoidrezeptor (MR), indem es zu einer Homodimerisierung bzw. Heterodimerisierung mit dem Glukokortikoidrezeptor führt. Zudem sind die pathophysiologischen Wirkungen des Aldosterons beispielsweise auf das Herz-Kreislauf-System in den Focus gerückt, welche zumindest teilweise auch vom MR abhängig sind. Zur weiteren Charakterisierung dieser Signalwege sollen Interaktionen des MR mit möglichen Zielproteinen untersucht werden. Biolumineszenz Resonanz Energietransfer (BRET) ist eine Methode zur Untersuchung von Proteininteraktionen. Um ein BRET-System für den MR zu erstellen, wurde der MR an eine Renilla Luciferase (Rluc) einerseits und das enhanced yellow fluorescent protein (EYFP) andererseits gekoppelt. Beide Fusionsproteine wurden auf ihre Funktionalität und Interaktion hin überprüft. Befinden sich die Fusionsproteine in räumlicher Nähe, regt das von der Luciferase emittierte Licht das fluoreszierende Protein an. Das aus Fluoreszenz und Lumineszenz berechnete BRET-Signal steigt und weist damit auf eine Proteininteraktion hin. Ansätze ohne fluoreszierenden Akzeptor korrigieren unspezifische Signaländerungen. Wir untersuchten den Effekt von Aldosteron und dem Aldosteronantagonisten Spironolacton sowie von Geldanamycin, das eine Dissoziation des MR von den Hitzeschockproteinen im Zytoplasma bewirkt. Aldosteron führte zu einer Steigerung des BRET-Signals, was die bereits bekannte Interaktion der Fusionsrezeptoren auch im BRET-System bestätigt. Geldanamycin bewirkte ebenfalls eine Signalsteigerung. Die gleichzeitige Gabe der beiden Substanzen sowie die Gabe von Spironolacton bewirkte keine Veränderung des BRET-Signals. Als Negativkontrolle verwendeten wir ein System mit an EYFP gekoppeltem MR und ungekoppelter Luciferase, also ohne Interaktionspartner für den EYFP-MR. Keine der oben genannten Substanzen führte hier zu einer Änderung des BRET-Signals. Das BRET-System kann damit die Grundlage für die Untersuchung der Interaktionen des MR mit weiteren Zielproteinen darstellen. N2 - The mineralocorticoid aldosterone plays an important role in salt and water homeostasis and blood pressure regulation. Physiologically, its homodimers or heterodimers with the glucocorticoid receptor act via the mineralocorticoid receptor (MR). Recently, the pathophysiological actions of aldosterone, e.g. on the cardiovascular system, have gained attention. These actions are at least in part dependent on the mineralocorticoid receptor. To characterize their signalling pathways, the interactions between the MR and possible target proteins are to be examined. Protein-protein interactions can be observed using bioluminescence resonance energy transfer (BRET). To establish a BRET assay for the MR, the receptor was genetically linked to a Renilla luciferase (Rluc) as one interaction partner and to an enhanced yellow fluorescent protein (EYFP) as a second one. Both fusion proteins were tested for their functionality and interaction. The two fusion proteins being at a close distance, the luciferase emission will excite the fluorescent protein. This results in an increase in BRET signal, thus indicating a protein-protein interaction. Samples without a fluorescent acceptor correct for non-specific signal alterations. We examined the effect of aldosterone, the antagonist spironolactone and of geldanamycine, which induces a dissociation of the MR and its heat shock proteins. Aldosterone induced an increase in BRET signal, thereby confirming the known interaction of the two fusion proteins in our BRET assay. Geldanamycine also caused an increase in BRET signal. Spironolactone as well as the simultaneous administration of aldosterone and geldanamycine did not provoke a change in BRET signal. As a negative control, we used samples containing an EYFP-MR fusion protein and an un-linked luciferase, i.e. samples lacking an interacting partner to the EYFP-MR. None of the above named substances resulted in a change in BRET signal. Thus, our BRET assay can be used to further study MR protein interactions. KW - Aldosteron KW - Mineralokortikoidrezeptor KW - BRET KW - aldosterone KW - mineralocorticoid receptor KW - BRET Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64957 ER - TY - THES A1 - Faul, Thomas T1 - Lokalisation und Dynamik der Replikationsproteine des murinen prä-replikativen Komplexes T1 - Localization and dynamics of replication proteins of the murine pre-replicative complex N2 - Ein Ziel der vorliegenden Arbeit war die Untersuchung der Lokalisation und der Dynamik der Replikationsproteine des murinen prä-replikativen Komplexes in vivo. Dazu wurden die zu untersuchenden Replikationsproteine als EGFP-Fusionsproteine in LTK--Zellen exprimiert und am konfokalen Laserscanning-Mikroskop untersucht. CDC6-EGFP war in der G1-Phase diffus in Zellkern und Cytoplasma verteilt, am G1/S-Übergang ausschließlich im Zellkern lokalisiert und während der S-Phase in zahlreichen Foci im Kern akkumuliert. CDC6-EGFP war mit Replikationsfoci colokalisiert. Endogenes Cdc6p wies dieselbe subzelluläre Verteilung wie CDC6-EGFP auf. Auch Fusionsproteine des humanen Proteins Cdc6p waren in HEK-293T-Zellen in Replikationsfoci lokalisiert. FRAP-Studien ergaben, dass 80-90 % von CDC6-EGFP während der gesamten S-Phase stabil mit der Replikationsmaschinerie assoziiert sind. Durch Mutation der Phosphoryliersstellen für Cyclin-abhängige Proteinkinasen wurde der Einfluss des Phosphorylierungsstatus der konservierten Serinreste der Cdk-Phosphorylierungsstellen auf die Lokalisation von CDC6-EGFP in vivo untersucht. Alle Mutanten bei denen die Cdk-Serinreste zu nicht-phosphorylierbaren Alaninresten mutiert wurden waren in Replikationsfoci lokalisiert. Dies zeigt, dass die Phosphorylierung dieser Serinreste für die Lokalisation von CDC6-EGFP an Stellen aktiver DNA-Replikation nicht essentiell ist. Durch Mutation der Serinreste zu Phosphatreste-simulierenden Aspartatresten konnte gezeigt werden, dass die Phosphorylierung des Serinrests S102 zum Export von CDC6-EGFP aus dem Zellkern führt. FRAP-Studien ergaben, dass CDC6-EGFP in Replikationsfoci an Serinrest 82 phosphoryliert und an Serinrest 102 dephosphoryliert vorliegt. Mit Immunfluoreszenz-Analysen konnte gezeigt werden, dass Chromatin in Replikationsfoci nicht acetyliert ist. Dies deutet darauf hin, dass die Elongation der DNA-Replikation an nicht-acetyliertem Chromatin erfolgt. Trichostatin A-induzierte Hyperacetylierung des Chromatins hatte keinen Einfluss auf Lokalisation und Mobilität von CDC6-EGFP in Replikationsfoci. Die Mobilität des nucleoplasmatischen CDC6-EGFP-Pools wurde dadurch erhöht. In der G1-Phase wurde die Mobilität von CDC6-EGFP durch TSA verringert, woraus gefolgert werden kann, dass der Acetylierungsstatus des Chromatins in der G1-Phase die Mobilität von CDC6-EGFP beeinflusst. ORC1-EGFP war im Zellkern in großen kugelförmigen Strukturen lokalisiert, ORC2-EGFP war diffus in Cytoplasma und Zellkern verteilt. ORC3-EGFP akkumulierte in PML nuclear bodies. Während ORC4-EGFP und ORC5-EGFP am Centrosom lokalisiert waren konnte ORC6-EGFP in Nucleoli nachgewiesen werden. Die EGFP-Fusionsproteine von Cdc45p, PCNA und DNA-Ligase-I waren im Zellkern lokalisiert, die Nucleoli waren ausgespart. Ein weiterer Aspekt dieser Arbeit war die Untersuchung der Substratspezifität der murinen Cdc7p/Dbf4p-Proteinkinase. Die in Sf9-Zellen exprimierte und aufgereinigte Kinase phosphorylierte Orc2p, Orc6p, Cdc45p und Mcm6p. Mit Phosphopeptidkartierungen konnte gezeigt werden, dass Cdc7p von CylinE/Cdk2 an zwei Stellen und von CyclinA/Cdk2 an einer Stelle in vitro phosphoryliert wird. CDC7-EGFP war in der G1-Phase, am G1/S-Übergang und in der S-Phase im Kern lokalisiert. Durch FISH-Experimente konnte der genomische Locus des murinen Cdc7-Gens der Bande E von Chromosom 5 zugeordnet werden. Mit Kinase-Assays wurde untersucht, ob die murine Plk1p-Kinase Initiationsfaktoren der DNA-Replikation in vitro phosphoryliert. Die in Sf9-Zellen exprimierte Plk1p phosphorylierte Cdc7p, Orc2p und Orc6p. Cdc7p und Orc6p sind mit Plk1p am Midbody während der Telophase in vivo colokalisiert. Ein weiteres Ziel dieser Arbeit war die Messung der Mobilität des murinen Transkriptions-Terminationsfaktors TTF-I mittels FRAP. EGFP-TTF-I und EGFP-NRD waren diffus in den Nucleoli verteilt, einzelne Areale waren ausgespart. EGFP-TTFdeltaN185 war hingegen in distinkten nucleolären Stellen akkumuliert. Mit FRAP-Studien konnte gezeigt werden, dass EGFP-TTFdeltaN185 in einer 10 %igen immobilen Fraktion vorlag während das Gesamtprotein EGFP-TTF-I zu 100% mobil war. Das Protein TIP5 interagiert mit TTF-I. EGFP-TIP5 war diffus im Nucleoplasma verteilt, die Ncleoli waren ausgespart. Durch Cotransfektionen verschiedener EYFP-TTF-I-Konstrukte mit EGFP-TIP5 konnte gezeigt werden, dass EGFP-TIP5 von EYFP-TTFdeltaN185 nicht in Nucleoli cotransportiert wird. Mit BRET-Studien ergaben, dass Orc6p mit TTF-I in vivo interagiert. Eine Interaktion mit TTFdeltaN185 war nicht nachweisbar. N2 - One task of this work was to analyze the localization and the dynamics of murine replication proteins in murine fibroblasts in vivo. Therefore, these proteins were expressed as EGFP fusion proteins and analyzed with a confocal laser scanning microscope in vivo. During G1 phase CDC6-EGFP was diffusely distributed throughout the cell. At entry into S phase an increased intensity of CDC6-EGFP staining was found throughout the nucleus, concurrent with the appearance of numerous foci. CDC6-EGFP localized during S phase in replication foci. Endogenous Cdc6p showed an identical cell cycle-specific distribution pattern as CDC6-EGFP in transfected cells. The distribution pattern of fusion proteins of human Cdc6p in HEK-293T was identical to that of murine CDC6-EGFP in L cells. FRAP experiments demonstrated that ~80-90% of CDC6-EGFP were stably associated with the replication apparatus during S phase. To investigate the influence of the phosphorylation status of the three Cdk sites on subcellular localization of CDC6-EGFP in vivo, these sites were mutated. Mutation of conserved serine residues within these consensus sites to nonphosphorylatable alanine residues had no effect on localization of corresponding mutants in replication factories, indicating that phosphorylation of these Cdk sites is dispensable for localization of CDC6-EGFP in replication factories. Mutation of serine residues to aspartates to mimic the negative charge of a phosphate indicated that phosphorylation of serine residue 102 mediates cytoplasmatic localization of CDC6-EGFP. FRAP studies of CDC6-EGFP mutants documented that serine residue 82 of CDC6-EGFP in replication factories was phosphorylated while serine residue 102 was non-phosphorylated. Interestingly, no colocalization of replication foci and acetylated proteins was observed, indicating hypoacetylation of chromatin in replication foci during DNA replication. Treatment of cells expressing CDC6-EGFP with TSA had no influence on localization and dynamics of CDC6-EGFP in replication foci. However, the mobility of the nucleoplasmatic pool of CDC6-EGFP was enhanced. The dynamics of CDC6-EGFP were reduced after TSA treatment during G1 phase. ORC1-EGFP accumulated in globular structures in the nucleus while ORC2-EGFP was diffusely distributed throughout the cells. ORC3-EGFP was localized in “PML nuclear bodies”. ORC4-EGFP and ORC5-EGFP were found to be localized at the centrosome. ORC6-EGFP accumulated in nucleoli. EGFP fusion proteins of Cdc45p, DNA ligase I and PCNA were diffusely distributed in the nucleus. Another task of this work was the identification of in vitro substrates of murine Cdc7p/Dbf4p kinase. Recombinant in Sf9 cells expressed Cdc7p/Dbf4p phosphorylated Orc2p, Orc6p, Cdc45p and Mcm6p in vitro. Phosphopeptide maps of phosphorylated Cdc7p revealed, that Cdc7p was phosphorylated by CyclinE/Cdk2 at one site, whereas CyclinA/Cdk2 phosphorylated Cdc7p at two different sites. CDC7-EGFP was diffusely distributed in the nucleus during G1 phase, G1/S and S phase. Using FISH chromosomal localization of mouse Cdc7 gene was mapped to chomosome 5, band 5E. To identify in vitro substrates of murine Plk1p, kinase assays were performed using pre-RC proteins as substrate. Recombinant in Sf9 cells expressed Plk1 kinase phosphorylated Cdc7p, Orc2p and Orc6p in vitro. Immunofluorescence studies indicated a colocalization of Plk1p with Cdc7p and Orc6p at midbody in telophase of mitosis. In the last part of this work, the mobility of murine transcription termination factor TTF-I was analyzed by FRAP. EGFP-tagged full-length TTF-I and EGFP-NRD were distributed throughout the whole nucleolus. The localization of EGFP-TTFdeltaN185, on the other hand, was more distinct. FRAP experiments with cells expressing EGFP-TTFdeltaN185 indicated the presence of a immobile fraction of ~10% while full-length EGFP-TTF-I was 100% mobile. The nucleolar protein TIP5 interacts with TTF-I. EGFP-TIP5 was freely distributed in the nucleus, whereas nucleolar regions were excluded from nuclear localization. Cotransfections of EGFP-TIP5 with EYFP-TTFdeltaN185 demonstrated, that EGFP-TIP5 was not coimported into nucleoli by EYFP-TTFdeltaN185. By use of BRET, protein-protein interactions between Orc6p and TTF-I were detected while interaction between Orc6p and TTFdeltaN185 were not observed. KW - Maus KW - Replikation KW - Proteine KW - DNA-Replikation KW - Cdc6 KW - FRAP KW - FLIP KW - BRET KW - DNA-replication KW - Cdc6 KW - FRAP KW - FLIP KW - BRET Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10473 ER - TY - THES A1 - Dorsch, Sandra T1 - Rezeptor-Rezeptor-Interaktion ß-adrenerger Rezeptoren T1 - Receptor-Receptor Interaction of ß-adrenergic Receptors N2 - Viele Membranrezeptoren liegen als über Disulfidbrücken-verbundene Dimere vor. Ein Nachweis der Dimerisierung ist in diesen Fällen methodisch klar und einfach zu erbringen. Für die meisten G-Protein-gekoppelten Rezeptoren dagegen ist weder die Existenz von Di- oder Oligomeren noch deren Funktion eindeutig belegt. Meist wurden Methoden wie Coimmunopräzipitation und Resonanz-Energie-Transfer-Verfahren wie BRET oder FRET verwendet, um Protein-Protein-Interaktionen zu untersuchen. Trotz ihrer hohen Sensitivität besitzen diese Methoden einige Grenzen und können je nach experimentellem Ansatz und Verwendung verschiedener Kontrollen, unterschiedliche Ergebnisse hinsichtlich des Vorliegens einer Protein-Protein-Interaktion liefern. Weder die Stabilität der Interaktion, noch die Fraktion der interagierenden Proteine kann mittels Resonanz-Energie-Transfer-Assays zuverlässig ermittelt werden. Auch die Größe der Komplexe ist nicht oder nur technisch aufwendig bestimmbar. Deshalb wurde in dieser Arbeit eine neue, unabhängige Methode entwickelt, um Rezeptor-Rezeptor-Interaktionen in lebenden Zellen genauer untersuchen zu können. Diese auf „Fluorescence Recovery after Photobleaching“ basierende Mikroskopie-Methode erlaubt die Mobilität von Proteinen zu bestimmen. Um Homointeraktionen zwischen Proteinen messen zu können, müssen zwei Protein-Fraktionen mit unterschiedlicher Mobilität vorliegen. Deshalb wurde eine Rezeptor-Fraktion extrazellulär mit YFP markiert und mit Hilfe polyklonaler Antikörper gegen YFP spezifisch immobilisiert. Die andere Rezeptorfraktion wurde intrazellulär mit CFP oder Cerulean markiert und wurde deshalb nicht von extrazellulären Antikörpern erkannt. So konnten mittels Zwei-Farben-FRAP potenzielle Interaktionen zwischen den immobilisierten extrazellulär-markierten Rezeptoren und den intrazellulär-markierten Rezeptoren durch eine Mobilitätsänderung letzterer detektiert werden. Diese Methode wurde mittels eines monomeren (CD86) und kovalent dimeren (CD28) Rezeptors validiert. Es zeigte sich, dass eine spezifische Immobilisierung extrazellulär-markierter Proteine nur durch polyklonale, nicht aber durch monoklonale Antikörper gegen YFP erreicht werden konnte. Intrazellulär-markierte Proteine wurden hierbei in ihrer Mobilität nicht durch die extrazellulären Antikörper beeinflusst. Bei Immobilisierung des extrazellulär-markierten CD86 war das coexprimierte, intrazellulär-markierte CD86-CFP weiterhin voll mobil. Außerdem zeigte das Monomer CD86 eine vom relativen CFP-YFP-Expressionsverhältnis unabhängige Mobilität. Dieses Ergebnis ließ den Schluss zu, dass extra- und intrazellulär-markiertes CD86 nicht miteinander interagieren und als Monomer vorliegen. Die Mobilität des kovalenten Dimers CD28 war dagegen abhängig vom CFP–YFP-Expressionsverhältnis und stimmte gut mit theoretisch erwarteten Werten für ein Dimer überein. Die Anwendung der Zwei-Farben-Methode zur Untersuchung von Interaktionen zwischen ß1- und ß2-adrenergen Rezeptoren zeigte Unterschiede zwischen beiden Rezeptor-Subtypen. ß1-AR zeigte eine spezifische transiente Interaktion, ß2-AR dagegen lagen als stabile Oligomere höherer Ordnung vor. Die transiente Interaktion zwischen ß1-AR und die stabile Oligomerisierung von ß2-AR wurde nicht nur in HEK 293T-Zellen sondern auch in neonatalen Rattenkardiomyozyten und bei 37 °C beobachtet. Ferner hatte der Aktivierungszustand des jeweiligen Rezeptors keinen Einfluß auf das Ausmaß der Interaktion. Zwischen ß1- und ß2-AR wurde nur eine sehr schwache und instabile Heterointeraktion mittels der Zwei-Farben-FRAP-Methode beobachtet. Um zu überprüfen, ob eine direkte Interaktion zwischen den adrenergen Rezeptoren vorliegt, wurde die BRET-Methode verwendet. Mittels BRET wurde eine direkte Interaktion zwischen ß2-AR festgestellt, jedoch konnte nicht zwischen Dimeren und Oligomeren höherer Ordnung unterschieden werden. Bei ß1-AR fand bei höheren YFP-Rluc-Expressionsverhältnissen ein spezifischer Energietransfer statt. Bei niedrigeren Expressionsverhältnissen lag das Signal jedoch im unspezifischen Bereich. Auch bei Untersuchung der Heterointeraktion zwischen ß1- und ß2-AR konnte keine klare Aussage über eine spezifische Interaktion zwischen beiden Rezeptor-Subtypen getroffen werden. N2 - Many membrane receptors exist as disulfide-bond dimers. In these cases dimerization is methodological clearly and easily provable. However, for most G-protein coupled receptors the postulated existence of di- or oligomerization nor their function is definitely demonstrated. Mostly, methods like co-immunoprecipitation and resonance energy transfer techniques like BRET and FRET were used to investigate protein-protein interactions. Despite their high sensitivity these methods have some limits and reveal sometimes distinct results regarding the occurrence of a protein-protein interaction depending on experimental approach and use of different controls. Neither the stability of the interaction nor the fraction of interacting proteins are determinable using resonance energy transfer assays. Furthermore the size of complexes is not or only technically difficult determinable. Therefore in this work a novel independent approach was developed to allow a more detailed investigation of receptor-receptor interactions in living cells. This method based on fluorescence recovery after photobleaching microscopy allows to determine the mobility of proteins. In order to measure homo-interactions between proteins two protein fractions with different mobility have to be distinguishable. Therefore one receptor fraction was extracellularly tagged with YFP and specifically immobilized using polyclonal antibodies against YFP. The other receptor fraction was intracellularly labeled with CFP or Cerulean and therefore not recognized by the extracellular antibodies. In this way using dual-color FRAP potential interactions between immobilized extracellularly-tagged receptors and intracellularly-tagged receptors were detectable due to a change of mobility of the latter. This method was validated using monomeric (CD86) and covalent dimeric (CD28) receptors. A specific immobilization of extracellularly-tagged proteins was achievable only by using polyclonal but not monoclonal antibodies against YFP. Intracellularly tagged proteins were not influenced in their mobility by extracellular antibodies. After immobilization of the extracellularly-labeled CD86 the coexpressed intracellularly-tagged CD86-CFP was still fully mobile. Furthermore the monomeric CD86 showed a relative CFP–YFP expression ratio independent mobility. This result led to the conclusion that extra- and intracellularly labeled CD86 did not interact with each other and exist as a monomer. The mobility of the covalent dimer CD28 however was depending on the relative CFP-YFP expression ratio and was in good agreement with theoretically expected values for a dimer. The application of the dual-color FRAP approach for the investigation of interactions between ß1- and ß2-adrenergic receptors showed differences between both receptor subtypes. ß1-AR exhibited a specific transient interaction, however ß2-AR existed as stable higher order oligomers. The transient interaction between ß1-AR and the stable higher order oligomerization of ß2-AR were not only observed in HEK 293T cells but also in neonatal rat cardiac myocytes and at 37°C. Furthermore the activation state of the respective receptor had no influence on the extent of the interaction. Between ß1- and ß2-AR only a weak and unstable hetero-interaction was observed using the dual-color FRAP approach. In order to control if a direct interaction between the adrenergic receptors is occurring the BRET method was applied. Using BRET a direct interaction between ß2-AR was observed, but it was not possible to distinguish between dimers and higher order oligomers. For ß1-AR a specific energy transfer occurred at higher YFP-Rluc expression ratios. At lower expression ratios the signal was in the unspecific range. Also the investigation of hetero-interactions between ß1- and ß2-AR revealed no clear conclusion about a specific interaction between both receptor subtypes. KW - Dimerisierung KW - FRAP KW - GPCR KW - ß-adrenerge Rezeptoren KW - BRET KW - FRAP KW - GPCR KW - ß-adrenergic Receptors KW - BRET Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39712 ER -