TY - THES A1 - Kobelt, Claudia T1 - Beiträge zur Chemie des höherkoordinierten Silliciums: Synthese, Struktur und Eigenschaften neuer höherkoordinierter Silicium(II)- und Silicium(IV)-Komplexe T1 - Contributions to the Chemistry of higher-coordinate Silicon: Synthesis, Structure and Properties of novel higher-coordinate Silicon(II)- and Silicon(IV)-complexes N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Dabei standen die Synthese und Charakterisierung neuer neutraler tetra-, penta- und hexakoordinierter Silicium(IV)-Komplexe sowie die Synthese, Charakterisierung und Reaktivität eines neuartigen Donor-stabilisierten Silylens im Vordergrund. Im Rahmen dieser Arbeit wurden das Silan 16, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38'·C6H5CH3, 40'∙C6H5CH3, 41 und 42, die neutralen pentakoordinierten Silicium(IV)-Komplexe 2‒8, 10·0.5C6H5CH3, 11, 12, 15, 17‒20 und 39', die neutralen hexakoordinierten Silicium(IV)-Komplexe 21‒23, das Donor-stabilisierte trikoordinierte Silylen 25, der neutrale tetrakoordinierte Silicium(II)-Komplex 35 sowie das Lithiumamidinat 1·2Et2O erstmalig dargestellt und charakterisiert. Die Charakterisierung dieser Verbindungen erfolgte durch NMR-Spektroskopie in Lösung und im Festkörper, durch Kristallstrukturanalyse sowie durch Elementaranalyse. Die Synthesen und Eigenschaften dieser Verbindungen können wie folgt zusammengefasst werden: Synthese und Charakterisierung neutraler pentakoordinierter Silicium(IV)-Komplexe Ausgehend von entsprechenden Silicium(IV)-haltigen Vorstufen wurden die neutralen pentakoordinierten Silicium(IV)-Komplexe 2‒8, 10·0.5C6H5CH3, 11, 12, 15 und 17‒20 dargestellt. So konnten die Verbindungen 2, 5, 7 und 8 durch Umsetzung der entsprechemden Trichlorsilane bzw. Tetrachlorsilan mit 1 in Diethylether erhalten werden. Diese Verbindungen besitzen an den beiden Stickstoff-Atomen des Amidinato-Liganden jeweils eine sterisch sehr anspruchsvolle Diisopropylphenyl-Einheit (Dipp), welche den Einbau eines zweiten Amidinato-Liganden nicht zulässt und sich so ausschließlich pentakoordinierte Silicium(IV)-Komplexe bilden. Durch Weiterreaktion von 2 und 5 mit Lithiumdimethyl- bzw. Kaliumbis(trimethylsilyl)amid entstanden die Komplexe 3, 4 und 6. Die Si-Koordinationspolyeder von 2‒8 im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei die Stickstoff-Atome des Amidinato-Liganden eine axiale bzw. äquatoriale Position besetzen. Die zweite axiale Position wird jeweils von einem Chloro-Liganden eingenommen. Die genannten Verbindungen besitzen alle einen stark gespannten viergliedrigen SiN2C-Ring mit mehr oder weniger stark ausgeprägter Elektronendelokalisation innerhalb de N‒C‒N-Fragmentes, welcher durch den Amidinato-Liganden mit dem Si-Koordinationszentrum gebildet wird und hauptverantwortlich für die starke Verzerrung der Si-Koordinationspolyeder ist. Die Verbindungen 10·0.5C6H5CH3, 11 und 12 entstanden durch Umsetzung der entsprechenden Trichlorsilane mit 9 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran. Durch Weiterreaktion von 11 mit Benzolthiol bzw. Benzolselenol und Triethylamin in Tetrahydrofuran wurden die Komplexe 18 und 19 gebildet. Die Verbindungen 15 und 20 entstanden mittels einer Transsilylierungsreaktion von 14 mit Azidotrimethylsilan bzw. 11 mit Trimethylsilyl(phenyl)tellurid in Tetrahydrofuran. Verbindung 17 wurde durch Umsetzung von Cl2Si(OPh)Me (16) mit 9 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran erhalten. Die Si-Koordinationspolyeder von 10·0.5C6H5CH3, 11, 12, 15 und 17‒20 im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei der tridentate N,N',S- bzw. N,N',O-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Das Pyridin-Stickstoff- und das Schwefel-Atom des N,N',S-Liganden (bzw. Sauerstoff-Atom des N,N',O-Liganden) besetzen die axialen Bindungspositionen. Synthese und Charakterisierung neutraler hexakoordinierter Silicium(IV)-Komplexe Die neutralen hexakoordinierten Silicium(IV)-Komplexe 21 und 22 wurden durch Umsetzung von Trichlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumamidinats in Diethylether dargestellt. Die Si-Koordinationspolyeder von 21 und 22 im Kristall entsprechen denen von stark verzerrten Oktaedern, wobei jeweils eines der beiden Stickstoff-Atome der zwei Amidinato-Liganden trans zueinander angeordnet sind. Die beiden anderen Stickstoff-Atome der Amidinato-Liganden befinden sich in trans-Position zum Chloro- bzw. Hydrido-Liganden. Der neutrale hexakoordinierte Silicium(IV)-Komplex 23 wurde durch Umsetzung des pentakoordinierten Silicium(IV)-Komplexes 11 mit 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran dargestellt. Das Si-Koordinationspolyeder von 23 im Kristall entspricht dem eines stark verzerrten Oktaeders, wobei der dreizähnige N,N',S-Ligand eine mer-Anordnung einnimmt und das Chinolin-Stickstoff-Atom und das Kohlenstoff-Atom des Methyl-Liganden trans zueinander stehen. Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass pentakoordinierte Chlorosilicium(IV)-Komplexe ‒ wie beispielsweise 2, 5 oder 11 ‒ sehr gut geeignete Ausgangsstoffe für die Darstellung neuartiger penta- und hexakoordinierter Silicium(IV)-Verbindungen darstellen. Synthese und Charakterisierung eines neuartigen Donor-stabilisierten Silylens Nachdem alle Versuche, ein entsprechendes Donor-stabilisiertes Silylen durch Basen-induzierte reduktive HCl-Eliminierung der penta- bzw. hexakoordinierten Chlorohydridosilicium(IV)-Komplexe 2‒4, 21 und 22 darzustellen, fehlschlugen, wurde daraufhin der pentakoordinierte Dichlorosilicium(IV)-Komplex 6 mit zwei Moläquivalenten elementarem Kalium in Tetrahydrofuran erfolgreich zum trikoordinierten Donor-stabilisierten Silylen 25 umgesetzt. Das Si-Koordinationspolyeder von 25 entspricht dem eines stark verzerrten (Pseudo)tetraeders, wobei die drei Bindungspositionen von den Stickstoff-Atomen und eine vierte von dem freien Elektronenpaar eingenommen werden. Die starke Verzerrung ist auf den stark gespannten viergliedrigen SiN2C-Ring des Komplexes zurückzuführen. Reaktivität des Donor-stabilisierten Silylens 25 Der trikoordinierte Silicium(II)-Komplex 25 reagierte mit Eisenpentacarbonyl in Toluol im Sinne einer nukleophilen Substitutionsreaktion unter Ausbildung einer Si–Fe-Bindung zum neutralen tetrakoordinierten Silicium(II)-Komplex 35. Das Si-Koordinationspolyeder von 35 im Kristall entspricht dem eines stark verzerrten Tetraeders. Das Fe-Koordinationspolyeder entspricht dem einer stark verzerrten trigonalen Bipyramide, wobei der sterisch sehr anspruchsvolle Silylen-Ligand interessanterweise eine axiale Bindungsposition am Eisen-Koordinationszentrum einnimmt. Desweiteren wurde 25 mit den Aziden Me3SiN3, PhSCH2N3 und (PhO)2P(O)N3 in Toluol im Sinne einer oxidativen Addition unter Abspaltung von elementarem Stickstoff zu 36, 37' bzw. 38'·C6H5CH3 umgesetzt. Bemerkenswert ist, dass bei der Reaktion mit PhSCH2N3 zu 37' eine Umlagerungsreaktion stattfindet, wobei eine Si–S-Bindung geknüpft und ein Si–N=CH2-Fragment gebildet wird. Bei der Reaktion von 25 mit (PhO)2P(O)N3 zu 38'·C6H5CH3 wird ein Sauerstoff-verbrücktes Dimer gebildet, wodurch ein achtgliedriger Ring mit zwei Silicium(IV)-Zentren aufgebaut wird. Die Si-Koordinationspolyeder von 36, 37' und 38'·C6H5CH3 im Kristall entsprechen denen von stark verzerrten Tetraedern, wobei der Amidinato-Ligand nur in Verbindung 36 bidentat an das Silicium-Zentrum koordiniert ist, während für 37' und 38'·C6H5CH3 ein monodentater Koordinationsmodus beobachtet wird. Durch Umsetzung von 25 mit N2O, S, Se bzw. Te in Toluol entstanden ebenfalls im Sinne einer oxidativen Addition die tetra- bzw. pentakoodinierten Silicium(IV)-Komplexe 39', 40'·C6H5CH3, 41 und 42. Die Verbindungen 39' und 40'·C6H5CH3 sind Dimere der eigentlichen Zielverbindungen 39 und 40, wobei 40' bei höheren Temperaturen zu dem Monomer 40 dissoziiert, welches dann nach Abkühlen auf Raumtemperatur auch in Lösung stabil ist. Die Verbindungen 41 sowie 42 bilden jedoch ausschließlich Monomere. Die Si-Koordinationspolyeder von 39' im Kristall entsprechen dem einer stark verzerrten trigonalen Bipyramide, während die Si-Koordinationspolyeder von 40'·C6H5CH3, 41 und 42 denen eines stark verzerrten Tetraeders entsprechen. Dabei ist der Amidinato-Ligand in 39', 41 und 42 bidentat, in 40'·C6H5CH3 dagegen monodentat an das Silicium-Koordinationszentrum koordiniert ist. Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass das Donor-stabilisierte Silylen 25 ein außergewöhnliches Reaktivitätsspektrum aufweist und damit ein sehr interessantes Synthesepotential zur Darstellung neuartiger Silicium(II)- und Silicium(IV)-Komplexe besitzt. N2 - This thesis deals with the chemistry of higher-coordinate silicon, with a special emphasis on the synthesis and characterization of novel neutral tetra-, penta- and hexacoordinate silicon(IV) compounds, as well as the synthesis, characterization, and reactivity studies of a novel donor-stabilized silylene. In the course of these studies, the silane 16, the neutral tetracoordinate silicon(IV) complexes 36, 37', 38'·C6H5CH3, 40'·C6H5CH3, 41, and 42, the neutral pentacoordinate silicon(IV) complexes 2‒8, 10·0.5C6H5CH3, 11, 12, 15, 17‒20, and 39', the neutral hexacoordinate silicon(IV) complexes 21‒23, the donor-stabilized tricoordinate silylene 25, the neutral tetracoordinate silicon(II) complex 35, and the lithium amidinate 1·2Et2O were synthesized and characterized for the first time. All of these compounds were characterized by NMR spectroscopy in the solid state and in solution, single-crystal X-ray diffraction, and elemental analyses. The syntheses and properties of these compounds can be summarized as follows: Synthesis and characterization of neutral pentacoordinate silicon(IV) complexes The neutral pentacoordinate silicon(IV) complexes 2‒8, 10·0.5C6H5CH3, 11, 12, 15 and 17‒20 were synthesized, starting from suitable silicon(IV) containing precursors. Compounds 2, 5, 7, and 8 were obtained by reaction of the respective trichlorosilanes or tetrachlorosilane with 1 in diethyl ether. These compounds contain a sterically demanding diisopropylphenyl unit (Dipp) at each of the two nitrogen atoms of the amidinato ligand, which prevents the introduction of a second amidinato ligand, and therefore only pentacoordinate silicon(IV) complexes were obtained. In a subsequent reaction of 2 and 5 with lithium dimethyl or potassium bis(trimethylsilyl) amide, the complexes 3, 4, and 6 were formed. The silicon coordination polyhedra of 2‒8 in the crystal are strongly distorted trigonal bipyramids, in which the nitrogen atoms of the amidinato ligand occupy an axial and an equatorial position, respectively. All these compounds contain a strongly strained four-membered SiN2C ring with a more or less distinct electron delocalization within the N–C–N fragment, which is built up by the amidinato ligand and the silicon coordination center, and which is primarily responsible for the strong distortion of the silicon coordination polyhedra. Complexes 10·0.5C6H5CH3, 11, and 12 were obtained by treatment of the respective trichlorosilanes with 9 and two molar equivalents of triethylamine in tetrahydrofuran. Subsequent reaction of 11 with benzenethiol and benzeneselenol, respectively, and triethylamine in tetrahydrofuran yielded the complexes 18 and 19. Compounds 15 and 20 were synthesized by a transsilylation reaction of 14 with azidotrimethylsilane in acetonitrile or 11 with phenyl trimethylsilyl telluride in tetrahydrofuran. Compound 17 was obtained by treatment of Cl2Si(OPh)Me (16) with 9 and two molar equivalents of triethylamine in tetrahydrofuran. The silicon coordination polyhedra of 10·0.5C6H5CH3, 11, 12, 15, and 17‒20 in the crystal are strongly distorted trigonal bipyramids, in which the tridentate N,N',S or N,N',O ligand forms two five-membered rings with the silicon coordination center. The pyridine nitrogen and sulfur atom of the N,N',S ligand (or the oxygen atom of the N,N',O ligand) occupy the two axial positions. Synthesis and characterization of neutral hexacoordinate silicon(IV) complexes The neutral hexacoordinate silicon(IV) complexes 21 and 22 were synthesized by treatment of trichlorosilane with two molar equivalents of the respective lithium amidinate in diethyl ether. The silicon coordination polyhedra of 21 and 22 in the crystal are strongly distorted octahedra, in which one of the two nitrogen atoms each of the two amidinato ligand are trans to each other. The two other nitrogen atoms of the amidinato ligands are in trans position to the chloro or hydrido ligand. The neutral hexacoordinate silicon(IV) complex 23 was obtained by treatment of the pentacoordinate silicon(IV) complex 11 with 8-hydroxychinoline and triethylamine in tetrahydrofuran. The silicon coordination polyhedron of 23 in the crystal is a strongly distorted octahedron, in which the tridentate N,N',S ligand forms a mer arrangement and the chinoline nitrogen atom and the carbon atom of the methyl ligand are trans to each other. With the syntheses described above, it could be demonstrated that pentacoordinate chlorosilicon(IV) complexes, such as 2, 5 or 11, are versatile precursors for the synthesis of novel penta- and hexacoordinate silicon(IV) compounds. Synthesis and characterization of a novel donor-stabilized silylene After all attempts to synthesize the respective donor-stabilized silylenes by base-induced reductive HCl elimination of the penta- and hexacoordinate silicon(IV) complexes 2‒4, 21, and 22 failed, the neutral pentacoordinate dichlorosilicon(IV) complex 6 was treated with two molar equivalents of elemental potassium in tetrahydrofuran to yield the tricoordinate donor-stabilized silylene 25 The silicon coordination polyhedron of 25 in the crystal is a strongly distorted (pseudo)tetrahedron, in which three binding positions are occupied by the nitrogen atoms and a fourth position by the lone pair. The strong distortion can be attributed to the strongly strained four-membered SiN2C ring of the complex. Reactivity of the donor-stabilized silylene 25 The tricoordinate silicon(II) complex 25 reacts with iron pentacarbonyl in toluene in terms of a nucleophilic substitution reaction to yield the neutral tetracoordinate silicon(II) complex 35 with an Si–Fe bond. The silicon coordination polyhedron of 35 in the crystal a strongly distorted tetrahedron. The iron coordination polyedron is a strongly distorted trigonal bipyramid, in which the sterically demanding silylene ligand occupies an axial position. Furthermore, compound 25 was treated with the azides Me3SiN3, PhSCH2N3 and (PhO)2P(O)N3 in toluene in terms of an oxidatve addition reaction, under elimination of elemental nitrogen, to yield 36, 37', and 38'·C6H5CH3, respectively. Remarkably, a rearrangement takes place in the reaction with PhSCH2N3 to afford compound 37', which contains an Si–SPh and Si–N=CH2 fragment. The reaction of 25 with (PhO)2P(O)N3 leads to the oxygen-bridged dimer 38'·C6H5CH3, which contains an eight-membered ring with two silicon(IV) centers. The silicon coordination polyhedra of 36, 37', and 38'·C6H5CH3 in the crystal are strongly distorted tetrahedra. In compounds 37' and 38'·C6H5CH3, the amidinato ligand binds in a monodentate fashion, whereas a bidentate coordination mode was observed for 36. Treatment of 25 with N2O, S, Se, or Te in toluene leads to respective tetra- and pentacoordinate silicon(IV) complexes 39', 40'·C6H5CH3, 41, and 42, also in terms of oxidative addition reactions. Compounds 39' and 40'·C6H5CH3 are dimers of the monomeric target compounds 39 and 40. Upon heating, however, dimer 40' dissociates to the monomer 40, which upon cooling to room temperature is stable in solution. Compounds 41 and 42 exist only as monomers. The silicon coordination polyhedron of 39' in the crystal is a strongly distorted trigonal bipyramid, whereas the silicon coordination polyhedra of 40'·C6H5CH3, 41, and 42 are strongly distorted tetrahedra. In compounds 39', 41, and 42, the amidinato ligand binds in a bidentate fashion, whereas a monodentate coordination mode was observed for40'·C6H5CH3. With the syntheses discribed above, it could be demonstrated that the donor-stabilized silylene 25 shows remarkable reactivity profile and a very interesting synthetic potential for the preparation of novel silicon(II) and silicon(IV) complexes. KW - Hypervalentes Molekül KW - Silylen KW - Chelatbildner KW - höherkoordiniertes Silicium KW - Donor-stabilisiertes Silylen KW - Siliciumkomplexe KW - Chelat-Liganden Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131439 ER - TY - THES A1 - Brückner [geb. Christel], Theresa T1 - Novel application forms and setting mechanisms of mineral bone cements T1 - Neuartige Anwendungsformen und Abbindemechanismen mineralischer Knochenzemente N2 - Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 % was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes. N2 - Calciumphosphatzemente (CPC) stellen ein bedeutsames Knochenersatzmaterial dar, da sie selbstabbindend, biokompatibel, osteokonduktiv und der anorganischen Komponente humanen Knochens ähnlich sind. Durch ihre Lagerstabilität, neutrale Abbindereaktion und da Wasser zum Abbinden ausreicht, werden Hydroxylapatit (HA) bildende Zemente in dual abbindenden, Ca2+ chelatisierenden und vorgefertigten Zementen, verarbeitet. Bei dual abbindenden Formulierungen findet die Lösungs-Fällungs-Reaktion zeitgleich zur Polymerisation wasserlöslicher Monomere zu einem Hydrogel statt. Chelatbildner können mit aus dem Rohpulver freigesetzten Ca2+ Komplexe bilden. Vorgefertigte Zemente enthalten eine nicht-wässrige Trägerflüssigkeit, welche die Abbindereaktion bis zur Anwendung des Zements im feuchten Milieu verzögert. In der vorliegenden Arbeit wurden zwei dieser Reaktionsmechanismen zur Entwicklung HA basierter Anwendungsformen eingesetzt. Bohrbare Zemente sind von klinischem Interesse, da die Qualität einer Schrauben- oder Plattenosteosynthese durch Augmentation mit Zement verbessert werden kann. Bei einem bohrbaren, dual abbindenden Komposit aus HA und einem Poly-2-Hydroxyethylmethacrylat Hydrogel wurde der Einfluss des Monomergehalts und des Pulver-zu-Flüssigkeits-Verhältnisses auf die Abbindekinetik und mechanischen Eigenschaften untersucht. Während die Umwandlung zu HA und das Kristallwachstum mit zunehmendem Monomergehalt reduziert wurden, war eine minimale Konzentration von 50 % nötig, um signifikante Verbesserungen des Bruchverhaltens im Sinne eines niedrigen Biegemoduls und einer hohen Bruchenergie bei gesteigerter Biegefestigkeit nachzuweisen. Wurde der Flüssigkeitsgehalt erhöht, so konnte die Paste injiziert und nach 10 min des Abbindens gebohrt werden. Während klassische Knochenwachsformulierungen Infektionen, Entzündungen, gehinderte Knochenneubildung und mangelhafte Bioabbaubarkeit vorweisen, zeigt die hier dargestellte Formulierung überlegene Eigenschaften. Sie bestand aus HA-Rohpulvern und einer nicht-wässrigen, mit Wasser mischbaren Trägermasse aus Polyethylenglycol (PEG). Es wurde gezeigt, dass das Wachs kohäsiv und knetbar ist und Blutdruckbedingungen standhält. Bei Kontakt mit einer wässrigen Phase wurde das PEG diffusiv mit Wasser ausgetauscht, so dass ein poröser, nanokristalliner HA präzipitierte. Die Einbettung eines Modell-Antibiotikums bestätigte zudem die Eignung des neuartigen Wachses als Wirkstoffdepot. Als eine mögliche Behandlung von 2-dimensionalen, gekrümmten Defekten der Schädeldecke wurden präfabrizierte Laminate aus lagerstabiler, Carbonatapatit bildender Zementpaste und Polycaprolakton-Fasermatten mit definierter Porenarchitektur vorgestellt. Diese sind bis zu ihrer Anwendung flexibel und wurden durch einen schichtweisen Aufbau aus beiden Komponenten erzeugt, so dass der Polymerscaffold den Zement am Zerfließen hindert. Es wurde gezeigt, dass die Herstellung makroporöser Fasermatten durch Elektrospinnen aus der Lösung mittels eines perforierten Kollektors geeignet war, da der hohe Faservolumengehalt und angemessene Grenzflächeneigenschaften die erfolgreiche Herstellung mechanisch verstärkter Laminate ermöglichte. Bei milder Behandlung der Scaffolds mit alkalischer Lösung wurden die Grenzflächeneigenschaften weiter verbessert, was zu einer Steigerung der Biegefestigkeit führte. Seit einigen Jahren geht der Trend der Knochenzementforschung immer stärker in Richtung von Magnesiumphosphatzementen (MPC), da diese verglichen mit CPC ein erhöhtes Degradationspotential, eine hohe initiale Festigkeit, sowie die Freisetzung biologisch wertvoller Mg2+ aufweisen. Jedoch stellen gängige Systeme hohe Anforderungen bei der Verwendung in nicht-klassischen Zementen wie z.B. der Bedarf an Fremdionen und die saure sowie schnelle Abbindereaktion. Dennoch war es möglich, einen chelatisierenden MPC zu entwickeln, welcher ein breites Spektrum an möglichen Anwendungsformen bot. In einer Machbarkeitsstudie wurde untersucht, ob das Abbindeprinzip funktioniert. Die Paste bestand aus Farringtonit und unterschiedlich konzentrierter Phytinsäure. Diese sollte mit freigesetzten Mg2+ komplexieren. Durch Anpassung der Phytinsäurekonzentration und Zugabe von Magnesiumoxid als Abbindemodulator wurden bohrbare Formulierungen erhalten. Neben der Bohrbarkeit sind auch adhäsive Eigenschaften der Zemente im feuchten Milieu von klinischem Interesse, wobei kommerziell erhältliche Systeme meist nicht bioabbaubar sind. Daher wurde die ex vivo Klebehaftung dieses MPC nach 7 d unter nassen Bedingungen auf Knochen analysiert, wobei sich eine Abscherfestigkeit von 0.8 MPa ergab. Des Weiteren zeigten diese Zemente einen Masseverlust von 2 Gew.% innerhalb von 24 d in wässriger Umgebung, sowie die Freisetzung von 0.17 mg/g an osteogenen Mg2+ pro Tag. Zusammen mit der bestätigten Zytokompatibilität bezüglich humaner fetaler Osteoblasten ist dieses System vielversprechend für die Anwendung als abbaubarer Biozement für unterschiedliche klinische Zwecke. KW - Knochenzement KW - Calciumphosphat KW - Magnesiumphosphate KW - Verbundwerkstoff KW - Chelatbildner KW - dual setting KW - dual abbindend KW - premixed KW - präfabriziert KW - bone wax KW - Knochenwachs KW - drillable KW - bohrbar KW - bone adhesive KW - Knochenkleber Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157045 ER -