TY - THES A1 - Stadler, Christoph T1 - Strukturuntersuchungen organischer Monolagen auf Ag(111) T1 - Structural investigations of organic monolayers on Ag(111) N2 - In dieser Arbeit wurden zwei komplementäre Beugungsverfahren verwendet, um die geometrische Struktur von organischen Adsorbaten (NTCDA und verschiedenen Metall-Pcs) auf Ag(111) zu untersuchen: um die lateralen Strukturparameter zu messen wurde hochauflösende Beugung niederenergetischer Elektronen (SPALEED) verwendet. Die vertikalen Abstände der einzelnen atomaren Spezies von der Silberoberfläche wurden mit der Methode der Absorption in stehenden Röntgenwellenfeldern (XSW) bestimmt. Aus den Arbeiten von Kilian et al. [43, 42] ist bekannt, daß die relaxierte und komprimierte Monolage NTCDA/Ag(111) einen Ordnungs-Unordnungs-Phasenübergang beim Abkühlen besitzt. Dazu sollten zu Beginn dieser Arbeit stabile Parameter mithilfe von Kühlversuchen unter Beobachtung im LEED gefunden werden, um diesen Phasenübergang zu reproduzieren. Dies ist nicht gelungen. Es wurden aber die vertikalen Abstände der Kohlenstoff- und Sauerstoffatome der relaxierten Monolage zum Substrat mithilfe von XSW bestimmt. Diese bestätigen die Messungen von Stanzel et al. [88, 87], die aufgrund des geringen Abstandes auf Chemisorption schließen lassen. Darüberhinaus wurde die Methode von Stanzel et al. verfeinert, das Photoelektronensignal (O1s) und das Auger-Signal (OKLL) kohärent zu interpretieren. Dabei wurden sowohl die nichtdipolaren Parameter der Photoemission (O1s) als auch der Anteil der durch Sekundärelektronen induzierten Augerzerfälle (OKLL) berücksichtigt und iterativ angepasst. Im Fall von NTCDA ist es möglich, anhand der Peakstruktur der O1s-Photoelektronen die Anhydridsauerstoffe von den Carbonylsauerstoffen zu trennen. Diese wurden bei XSW als getrennte Detektionskanäle verwendet und zeigen für die relaxierte Monolagenstruktur von NTCDA/Ag(111) - ähnlich wie schon von Hauschild et al. für PTCDA/Ag(111) [29, 30] gemessen - daß die Carbonylsauerstoffe in den Ecken des NTCDA-Moleküls um ca. 0:10 näher am Substrat liegen als die Anhydridsauerstoffe in der Brückenposition. Solch detaillierten Messungen sind notwendig, um für die Vielzahl von verschiedenen theoretischen ab-initio Methoden und Näherungsrechnungen ein Maß für deren Genauigkeit bereitzustellen. Bei den relativ großen Einheitszellenund der deshalb hohen Anzahl von Elektronen im organischen Molekül und den darunterliegenden Silberatomen haben diese Methoden noch Schwierigkeiten in endlicher Zeit akkurate Ergebnisse zu liefern. Der Hauptteil der Arbeit beschäftigte sich mit der geometrischen Struktur von Metall-Phthalocyaninen auf Ag(111). Das Phasendiagramm der Submonolagenstrukturen von SnPc/Ag(111) besteht im wesentlichen aus drei Bereichen in Abhängigkeit der Bedeckung und der Temepratur: Bei Raumtemperatur liegt bei niedrigen Bedeckungen unterhalb von ca. 0.9ML eine gasförmige Phase vor. Zwischen 0.9ML und 1 ML treten inkommensurable Strukturen auf, deren geometrische Parameter mit der Bedeckung variieren. Bei beiden Phasen nimmt der intermolekulare Abstand kontinuierlich mit der Bedeckung ab. Zumindest bei den inkommensurablen Phasen ist das ein klarer Beweis für eine Repulsion zwischen den Molekülen. Bei tiefen Temperaturen (<45°C) gibt es in einem mittleren Bedeckungsbereich (0.5ML - 0.92ML) eine kommensurable Überstruktur mit zwei Molekülen pro Einheitszelle. Es ist sogar möglich, von der inkommensurablen Phase (0.9ML...0.92ML) durch Temperaturabsenkung zu dieser etwas dichter gepackten kommensurablen Phase zu gelangen - die Repulsion lässt sich also nur mit Hilfe einer Temperaturänderung in eine Attraktion zwischen den Molekülen umschalten. Aufgrund der Abstände der verschiedenen Spezies zum Silbersubstrat konnte die Orientierung der Moleküle zum Substrat in den verschiedenen Phasen gemessen werden. Sie deuten auf eine chemisorptive Anbindung der Moleküle. Interessanterweise liegen die Moleküle in der Monolage alle mit dem Sn-Atom zum Substrat, während das Sn-Atom in der kommensurablen Tieftemperaturphase alternierend zum Substrat hinund wegzeigt. Diese Messungen erlauben eine Begründung der Attraktion und Repulsion zwischen den Molekülen auf Basis eines Donations-Rückdonationsmodells der Bindung der Moleküle an das Substrat. Sie werden mit den Ergebnissen von CuPc/Ag(111) von Ingo Kröger verglichen [46]. Schließlich werden noch erste Messungen an TiOPc vorgestellt. Die Datenlage bei TiOPc ist noch weniger dicht, es zeigt aber ein ähnliches Verhalten. Der augenfälligste Unterschied zu SnPc ist wohl die stabile Bi-Lage im Fall des TiOPc/Ag(111), die sich nicht durch Tempern vollständig ablösen lässt - im Gegensatz zu SnPc/Ag(111). Diese ersten geometrischen Messungen stimulierten neben weiteren SPALEED und XSW Messungen [46, 85] eine Reihe weiterer Untersuchungen in der Gruppe wie UPS, Austrittsarbeitsänderungen und detaillierte XPS-Messungen an den Rumpfelektronen, die das Donations-Rückdonationsmodell und die Orientierung der Moleküle bestätigen [108, 71]. N2 - In order to study the geometry of organic Adsorbates (NTCDA and different Metal-Pcs) on Ag(111) two complementary methods were used: the lateral structural parameters were explored via high resolution low energy electron diffraction (SPALEED), the vertical distances of the different atomic species to the substrate were measured with the method of absorption profiles in x-ray standing waves (XSW). NTCDA/Ag(111) forms a relaxed and a compressed monolayer structure and shows an order-disorder phase transition upon cooling [43, 42]. In the beginning of this work the aim was to and stable parameters for this phase transition upon cooling with LEED, which was not succesful. In addition, the vertical distances of the carbon and oxygen atoms of the relaxed monolayer to the substrate was determined with XSW. These measurements confirmed the results of Stanzel et al. [88,87] which indicates a chemisorption because of the relatively small bonding lenghts. His method of using both, the photoelectron signal (O1s) and Auger signal (OKLL) for a coherent interpretation of the distances was refined. Therefore, the non-dipolar parameters of the photoemission (O1s) and the portion of secondary electron induced Auger (OKLL) were taken into account and iteratively adjusted. In the case of NTCDA/Ag(111) the O1s-peak structure allows to distinguish between anhydride and carbonyl oxygen signals. These signals have been used as independant absorption channels in the XSW-experiment and show that the carbonyl oxygens in the edge of the molecule are about 0.1Å closer to the substrate than the anhydride oxygen in the bridge position - a result similar to PTCDA/Ag(111) measured by Hauschild et al. [29, 30]. The big variaty of theoretical ab-initio calculations and approximations need such detailed input in order to evaluate the quality of these calculations. The relatively big unit-cells and therefore the high number of electrons in the organic molecules and the underlying silver atoms is a big hurdle to get accurate theoretical results in limited timeframes. The main part of this work is dedicated to the geometrical structure of different metal phthalocyanines on Ag(111). The phase diagram of the submonolayer structures of SnPc/Ag(111) shows three different parts as a function of coverage and temperature: at room temperature at lower coverages (<0.9ML) a gaseous phase appears. Between 0.9ML and 1ML incommensurate structures appear, which change their geometric parameters continously with coverage. In both phases the intermolecular distances decrease continously with coverage. At least for the incommensurate phases, this clearly proofs intermolecular repulsion. At low temperatures (<45°C) in a medium coverage region (0.5ML - 0.92ML) a commensurate structure with two molecules per unit cell occurs. It is even possible to change from the incommensurate phase (0.9ML...0.92ML) to the slightly denser packed commensurate phase via cooling: The intermolecular repulsion changes to attraction only via a temperature change. With the distance of the different species in the molecule the orientation of the molecule to the substrate could be determined for the different phases. The distances themselves indicate a chemisorption of the molecules to the Ag(111) surface. Interestingly, the molecules in the monolayer are all in „Sn-down“-configuration, whereas the molecules in the commensurate phase alternate in „Sn-up“- and „Sn-down“-configuration. These measurements allow an interpretation of the attraction and repulsion in between the molecules on a donation/back donation model of the chemisorption of the molecule to the substrate. These measurements are compared to the results on CuPc/Ag(111) of Ingo Kröger [46]. At last, first measurments on TiOPc/Ag(111) are presented. The data collection in the phase diagram is much less dense than in the case of SnPc. However, a similar behavior is already seen. The most prominent difference between SnPc and TiOPc is the stable bi-layer in the case of TiOPc, which cannot be removed via annealing - in contrast to the case of SnPc/Ag(111). These first geometric measurements stimulated other expermiment in our group on these systems like UPS, core-level XPS and determination of the work function which all are in favor of this donation/backdonation model and the different configurations of the molecules in the phase diagram [108, 71]. Also SPALEED and XSW measurements have been continued [46, 85]. KW - LEED KW - Monoschicht KW - Chemisorption KW - Ordnungs-Unordnungs-Umwandlung KW - Oberflächenphysik KW - stehende Röntgenwellenfelder KW - Repulsion organischer Moleküle KW - Repulsion of organic molecules KW - XSW KW - LEED KW - phase transition KW - chemisorption Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35930 ER - TY - THES A1 - Kastner, Matthias J. T1 - Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes T1 - Spektroskopische Untersuchung von molekularer Adsorption und Desorption an einzelnen einwandigen Kohlenstoffnanoröhren N2 - Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale. N2 - Nanoelektronik ist eine wichtige Technologie um das Größen-Limit gegenwärtiger Silizium-basierter Technologie zu überwinden. Einwandige Kohlenstoffnanoröhren sind halbleitende Moleküle, die eine Reihe von Eigenschaften dafür zur Verfügung stellen. Sie sind einsetzbar als Sensoren, in der Fernmeldetechnik und für elektronische Rechenoperationen. Aufgrund ihres hohen Verhältnisses von Oberfläche zu Volumen werden nahezu alle Eigenschaften von Kohlenstoffnanoröhren stark von Adsorption beeinflusst. Einwandige Kohlenstoffnanoröhren mit kleineren Durchmessern (0.7-0.9nm) zeigen einen stärkeren Einfluss auf Phänomene, die an der Oberfläche auftreten. Um speziell diese Nanoröhren genauer zu untersuchen wurde eine Synthese Strategie entwickelt, die Nanoröhren mit hoher Qualität und Länge herstellen kann und dabei eine saubere Oberfläche gewährleisten ohne ihre Emissions-Stärke durch Bündelung zu verlieren. Die erhaltenen Ergebnisse unterstützen Studien aus der Literatur, die zumeist an Röhren mit größeren Durchmessern durchgeführt wurden. Die Größe des Datensatzes erlaubt es, Nanoröhren mit perfekten Emissions-Eigenschaften und großer mechanischer Stabilität auszuwählen. Adsorptionen beeinflussen die Bewegung und Bindungs-Stärke der Excitonen, da sie ein Coulomb Potential an der Außenseite der Röhre ausbilden. Um die Adsorptionsprozess an der Oberfläche mit minimalen konkurrierenden Effekten zu untersuchen, wurde ein spezielles mikroskopisches Setup gewählt und eine Messmethode entwickelt um dieses System zu untersuchen. Das System wurde mit Hilfe von Bildern und Spektren charakterisiert. Über eine Simulation wurde außerdem gezeigt dass die untersuchten Nanoröhren große Diffusionslängen (>350nm) und Exciton Größen (<8.5nm) besitzen müssen. Der Adsorptions Prozess an Kohlenstoffnanoröhren wurde sowohl mit Molekülen in der Gas-Phase untersucht, also auch in Lösungsmitteln und mit Feststoffen. Alle Experimente wurde dabei an frei hängenden Röhren durchgeführt, die auf einem Silizium Wafer Substrat aufgebracht wurden. Die Experimente in der Gas Phase zeigten, dass die excitonische Emissions-Energie eine instantane und schnelle Blauverschiebung erfährt wenn die Nanoröhren mit einem Laser angeregt werden. Diese Verschiebung wurde auf die Desorption von Oberflächenverunreinigungen zurückgeführt, die an Luft inhärent die Messung beeinflussen. Durch die Annahme, nach der Untersuchung eine reine Oberfläche zu erhalten, konnte die Referenz der Vakkum-Emission erstellt werden, was es ermöglicht, den Einfluss der dielektrischen Umgebung genauer zu bestimmen. In einem weitern Experiment wurde die Adsorption von Wasserstoff getestet. In diesen Systemen bildet sich durch die Ausbildung von sp 3 -Defekten eine neue Emissionsbande aus. Solche Emissionen werden derzeit für die Anwendung als Einzelphotonenemitter diskutiert. Die hier vorgestellte Methode erlaubt die direkte Synthese solcher Systeme im CVD Ofen. Die frei hängenden Nanoröhren wurden weiter analysiert um den Effekt des Lösungsmittels auf die Emission detailiert zu untersuchen. Es wurde gezeigt, dass in Hexan und Acetonitril ein signifikant hoher Quantenausbeute-Verlust zu beobachten ist. Toluol hingegen zeigte sich hier am Besten. Die Energie-Verschiebungen waren insignifikant unterschiedlich zwischen den Lösungsmitteln. Ein Spezialfall war bei Acetonitril zu beobachten, in dem sich über den Zeitraum von 24h eine starke Emission herausbildet, die auf eine Kopplung mit Lösungsmittel-Schwingungen zurückgeführt wird. Die Stärke dieser Emission erlaubt die Vermutung, dass es sich um eine gekoppelte Schwingung von linear orientiertem Acetonitril in der Nanoröhre handelt. Eine solch starke Emission könnte zu Anwendungen in Zell-Gewebe führen, da weder Anregung noch Emission sich im Fenster der Blut- und Wasserabsorption befindet. Durch die eindeutige Identifizierung von Lösungsmitteleffekten auf die Dispergierung von Kohlenstoffnanoröhren war es möglich, den Prozess der Anlagerung von Polyfluorene Polymeren direkt zu beobachten. Das Hinzufügen von Polymer zur Lösung führt zu einem schrittweisen reversiblen Anstieg der Emissions Intensität. Dieser Anstieg wird von einem gleichzeitigen irreversiblen schrittweisen Abfall der Emissionsintensität begleitet. Leider ist das System nur geeignet, Adsorptionen bis maximal 100nm Länge aufzulösen. Eine detaillierte Analyse ist daher schwer. Trotzdem wird vermutet, dass es sich bei dem langsamen Prozess um das Ausbilden von π -Stapeln handelt, wobei der schnelle Prozess mit der nicht-kovalenten Bindung der Polymer-Seitenketten an die Oberfläche assoziiert wird. Obwohl über die eigentliche Bindung des Polymers nur Vermutungen angestellt werden können, so wirft die Untersuchung doch einen Fokus auf die Wahl des Lösungsmittels, da diese Entscheidung einen viel größeren Effekt verursacht, als die Bindung des Polymers selbst. Diese Arbeit stellt fundamentale Betrachtungen zur Adsorption von verschiedenen Molekülen an Kohlenstoffnanoröhren auf. Die Betrachtungen wurden mit festen, flüssigen und gasförmigen Molekülen durchgeführt. Die Ergebnisse zeigen, dass Nanoröhren geeignet sind, als Molekül-Sensoren verwendet zu werden, da sie stark auf Änderungen in ihrer Umgebung reagieren können. Weiterhin wurden Lösungsmittel und Eigenschaften aufgezeigt, die die Quanteneffizienz signifikant beeinflussen. Eine Anwendung in der biologischen Mikroskopie ist denkbar, genauso wie für eine effizientere und sicherere Fernmeldeinfrastruktur. Weiterhin wurden Wege aufgezeigt, Super-Kondensatoren auf Nanorohr-Basis zu bauen, die als Anwendung in einem Kohlenstoffnanorohr-basierenden Computer von Interesse sein könnten. Obwohl die Erkenntnisse fundamental sind, zeigen diese Studien, dass es mit bestimmten Tricks möglich ist, den Raum am unteren Ende der Nanometerskala zu erforschen und zu entdecken. KW - Kohlenstoff-Nanoröhre KW - Einwandige Kohlenstoff-Nanoröhre KW - Adsorption KW - Chemisorption KW - Physisorption KW - nanotube KW - microscopy KW - adsorption Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211755 ER -