TY - THES A1 - Reitzenstein, Stephan T1 - Monolithische Halbleiternanostrukturen als ballistische Verstärker und logische Gatter T1 - Ballistic amplifiers and logic gates based on monolithic semiconductor nanostructures N2 - Im Rahmen dieser Arbeit wurden monolithische Halbleiternanostrukturen hinsichtlich neuartiger nanoelektronischer Transporteffekte untersucht. Hierbei wurden gezielt der ballistische Charakter des Ladungstransportes in mesoskopischen Strukturen sowie die kapazitive Kopplung einzelner Strukturbereiche ausgenutzt, um ballistische Verstärkerelemente und logische Gatter zu realisieren. Die untersuchten Nanostrukturen basieren auf dem zweidimensionalen Elektronengas modulationsdotierter GaAs/AlGaAs-Heterostrukturen und wurden über Elektronenstrahl-Lithographie sowie nasschemische Ätztechniken realisiert. Somit entstanden niederdimensionale Leiter mit Kanalbreiten von wenigen 10 nm, deren Leitwert über planare seitliche Gates elektrisch kontrolliert werden kann. Bei den Transportuntersuchungen, die zum Teil im stark nichtlinearen Transportbereich und bei Temperaturen bis hin zu 300 K durchgeführt wurden, stellte sich das Konzept verzweigter Kanalstrukturen als vielversprechend hinsichtlich der Anwendung für eine neuartige Nanoelektronik heraus. So kann eine im Folgenden als Y-Transistor bezeichnete, verzweigte Kanalstruktur in Abhängigkeit der äußeren Beschaltung als Differenzverstärker, invertierender Verstärker, bistabiles Schaltelement oder aber auch als logisches Gatter eingesetzt werden. Zudem eröffnet der Y-Transistor einen experimentellen Zugang zu den nichtklassischen Eigenschaften nanometrischer Kapazitäten, die sich von denen rein geometrisch definierter Kapazitäten aufgrund der endlichen Zustandsdichte erheblich unterscheiden können. Für ballistische Y-Verzweigungen tritt zudem ein neuartiger Gleichrichtungseffekt auf, der in Kombination mit den verstärkenden Eigenschaften von Y-Transistoren dazu genutzt wurde, kompakte logische Gatter sowie einen ballistischen Halb-Addierer zu realisieren. N2 - This thesis reports investigations of monolithic semiconductor nanostructures with novel nanoelectronic transport effects. In particular, it is shown that the ballistic motion of electrons in nanoelectronic devices in combination with capacitive coupling of nearby device sections can be used to realize ballistic amplifiers and logic gates. The nanostructures under investigation are based on the two dimensional electron gas of modulation doped GaAs/AlGaAs-heterostructures and were patterned by electron-beam-lithography and wet chemical etching. In this way, low dimensional conductors with widths on the order of a few 10 nm to about 100 nm controlled by in-plane gates were realized. Investigations at temperatures up to 300 K in the nonlinear transport regime show that branched nanojunctions are promising candidates for future nanoelectronic building blocks. Depending on the external circuit, gated Y-branched nanojunctions, here referred to as "Y-transistors", can be used as differential amplifiers, inverting amplifiers, bistable switches and logic gates. In addition, Y-transistors allow the experimental investigation of nonclassical properties of nanoscaled capacitors, which differ significantly from those of macroscopic capacitors due to the different densities of states. Moreover, a novel ballistic rectification effect observed for Y-branched nanojunctions is exploited to realize a ballistic in-plane half-adder with output signals amplified by feedback coupled Y-transistors. KW - Transistor KW - Nanostruktur KW - Ballistischer Effekt KW - Nanostruktur KW - Transistor KW - Ballistischer Ladungstransport KW - Verstärker KW - Logisches Gatter KW - Nanostructure KW - Transistor KW - Ballistic Transport KW - Amplifier KW - Logic Gate Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12177 ER - TY - THES A1 - Lang, Stefan T1 - Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen T1 - Transport Investigations on Vertically and Laterally Coupled Low Dimensional Electron-Systems N2 - An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter über einen Verzweigungspunkt Y-förmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazitäten als auch die Quantenkapazitäten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazitäten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazitäten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. Für X-förmige Verzweigungen wird gezeigt, dass für ausgewählte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zurückgeführt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilitätsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazität aufweisen. Außerdem konnte in größeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer übereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen während des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven Ätzprozess anwenden zu können. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles Ätzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate für das andere 2DEG dienen kann, wobei für die untersuchten Strukturen eine Gateeffektivität nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken geätzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszuständen des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit für stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abhängen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfläche liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs über ein Metallgate definiert. Andererseits wurde auf der gegenüberliegenden Seite eine Potentialbarriere durch den Ätzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der geätzten Grenzfläche zurückzuführen sind. Für hohe Vorwärtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivität von 3.4mVT zu verwenden. Als Ausblick für die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential für zukünftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel für die Zukunft sein, Neuron ähnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren. N2 - This thesis reports on transport investigations performed with semiconductor nanostructures carrying low-dimensional, highly mobile electron gases. These structures are based on modulation doped GaAs/AlGaAs layers. Lithographic techniques were subsequently applied to define narrow channels with different geometries. In this way, laterally as well as vertically coupled conductors like Y- and X-structures were realized. Non-linear threshold voltage shifts in an electron Y-branch switch We have studied the threshold characteristics and gate efficiencies of electron Y-branch switches controlled by in-plane gates. The threshold voltage was found to shift in a nonlinear manner for a certain regime of inplane electric fields controlled by the voltage difference between the gates along the junction. This result is interpreted in terms of local conduction band maxima in the stem and the branches. To explain the non-linear threshold we propose a model based on coupled quantum capacitances and geometrical capacitances including charges localized in the Y-branch. Also the switching efficiencies, which are measures of how much of a change in the electrochemical potential of the gate is transferred into a change of the conduction band maximum, in the switch depend on the gate voltages. The switching efficiency is larger for those parts of the Y-branch with the smallest quantum capacitance. Network-calculations enabled us to determine the relevant system-parameters. Coulomb-blockade and bistability in X-structures We demonstrated charge transport to be blocked for certain voltage regimes applied to four laterally coupled sidegates of an X-structure. This is related to the formation of an electron island, a quantum dot, in the branching section of the device. Therefore, diamond patterns associated with Coulomb- blockade were observed in transport spectroscopy and the electron transport across the structure was analyzed by means of a stability diagram. It was found that the central electron island has a diameter of about 20nm with a charging energy of E_C=15meV. Furthermore we identified transport regimes showing a negative differential conductance. This was interpreted in terms of a dynamic capacitance between the island and the respective drain contact. Moreover bistable switching was demonstrated as a result of self-gating. Inverting as well as non-inverting switching in the self-gating regime is also realized. Coupled two dimensional electron gases Double GaAs quantum wells embedded between modulation-doped AlGaAs barriers with different Al contents were grown by molecular beam epitaxy. Independent electric contacts to each well were realized by applying different etching techniques. Particularly, the lower quantum well was electrically pinched off by an undercut of the lower AlGaAs barrier exploiting an Al-selective etching process. In contrast, the upper quantum well was locally depleted by top etched trenches. Transistor operation of quantum wires defined in such bilayers is demonstrated at room temperature with one GaAs layer used as conducting channel controlled by the other nearby layer as efficient quantum gate. Furthermore, in devices exploiting a low doping concentration, highly effective gating with gate leverage factors near unity is realized up to T=250K. Finally, bistable switching operation is observed for structures exploiting a floating gate. Provided this floating gate becomes charged, it is demonstrated that the threshold voltage of the waveguide increases drastically. Magnetic-field induced asymmetries in quantum wires with asymmetric gate coupling The two-terminal conductance of GaAs/AlGaAs quantum wires was studied in the non-linear regime. The quantum wires were coupled asymmetrically to a metal gate and investigated for a magnetic field perpendicular to the sample surface. A sidegate was defined by wet chemical etching of a deep trench. Adjacent to this trench a narrow metal top gate was deposited on the sample's surface. Therefore, the channel was on the one hand defined by local depletion of the 2DEG by means of a negative topgate voltage. On the other hand, the etched trench leads to a potential barrier serving also as sidewall. It was found that the conductance of the quantum wire shows pronounced asymmetries when the magnetic field is reversed. These asymmetries are related to different scattering mechanisms, i.e. specular scattering of the channel electrons at the sidewall caused by an electrostatic confinement and backscattering at the boundary due to the etched trench. The asymmetric conductance was identified to increase significantly with the bias voltage. This probably allows the application of such structures as magnetic field sensors with a sensitivity of 3.4mV/T KW - Quantendraht KW - Quantenwell KW - Transistor KW - Mesoskopischer Transport KW - Quantumwire KW - Electronics KW - Transistor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37652 ER - TY - THES A1 - Göpfert, Sebastian T1 - Einzel-Quantenpunkt-Speichertransistor: Experiment und Modellierung T1 - Single quantum dot memory transistor: Experiment and modeling N2 - In dieser Arbeit wurden Einzel-Quantenpunkt-Speichertransistoren im Experiment untersucht und wesentliche Ergebnisse durch Modellierung nachgebildet. Der Einzel-Quantenpunkt-Speichertransistor ist ein Bauelement, welches durch eine neuartige Verfahrensweise im Schichtaufbau und bei der Strukturierung realisiert wurde. Hierbei sind vor allem zwei Teilschritte hervorzuheben: Zum einen wurde das Speicherelement aus positionskontrolliert gewachsenen InAs Quantenpunkten gebildet. Zum anderen wurden durch eine spezielle Trockenätztechnik schmale Ätzstrukturen erzeugt, welche sehr präzise an der lateralen Position der Quantenpunkte ausgerichtet war. Durch diese Verfahrensweise war es somit möglich, Transistorstrukturen mit einzelnen Quantenpunkten an den charakteristischen Engstellen des Kanals zu realisieren. N2 - In this thesis single-quantum-dot memory-transistors have been studied in experiment and the experimental findings have been reproduced by modeling. The studied single-quantum-dot memory transistor is a device which has been realized by a novel process technique as regards layer composition and structuring. According to this there are two steps to be emphasized: First the memory element is based on site-controlled grown InAs quantum dots. Second, there has been used a unique dry etching technique to define narrow etched structures, which have been precisely aligned laterally with respect to the position of the quantum dots. Due to this method it was possible to realize transistor structures with single quantum dots centered in a quantum wire. KW - Quantenpunkt KW - Transistor KW - Speicherelement KW - single electron transport KW - single quantum dot KW - nanotechnology KW - Nanotechnologie KW - Elektronischer Transport KW - Single electron transfer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80600 ER -