TY - JOUR A1 - Wiemer, Julian A1 - Rauner, Milena M. A1 - Stegmann, Yannik A1 - Pauli, Paul T1 - Reappraising fear: is up-regulation more efficient than down-regulation? JF - Motivation and Emotion N2 - Catastrophizing thoughts may contribute to the development of anxiety, but functional emotion regulation may help to improve treatment. No study so far directly compared up- and down-regulation of fear by cognitive reappraisal. Here, healthy individuals took part in a cued fear experiment, in which multiple pictures of faces were paired twice with an unpleasant scream or presented as safety stimuli. Participants (N = 47) were asked (within-subjects) to down-regulate, to up-regulate and to maintain their natural emotional response. Valence and arousal ratings indicated successful up- and down-regulation of the emotional experience, while heart rate and pupil dilation increased during up-regulation, but showed no reduction in down-regulation. State and trait anxiety correlated with evaluations of safety but not threat stimuli, which supports the role of deficient safety learning in anxiety. Reappraisal did not modulate this effect. In conclusion, this study reveals evidence for up-regulation effects in fear, which might be even more efficient than down-regulation on a physiological level and highlights the importance of catastrophizing thoughts for the maintenance of fear and anxiety. KW - anxiety KW - fear conditioning KW - cognitive reappraisal KW - pupil diameter KW - heart rate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269187 SN - 1573-6644 VL - 45 IS - 2 ER - TY - JOUR A1 - Strekalova, Tatyana A1 - Pavlov, Dmitrii A1 - Trofimov, Alexander A1 - Anthony, Daniel C. A1 - Svistunov, Andrei A1 - Proshin, Andrey A1 - Umriukhin, Aleksei A1 - Lyundup, Alexei A1 - Lesch, Klaus-Peter A1 - Cespuglio, Raymond T1 - Hippocampal over-expression of cyclooxygenase-2 (COX-2) is associated with susceptibility to stress-induced anhedonia in mice JF - International Journal of Molecular Sciences N2 - The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram. KW - major depression KW - inducible cyclooxygenase-2 (COX-2) KW - hippocampus KW - anhedonia KW - chronic stress KW - stress resilience KW - fear conditioning KW - celecoxib KW - citalopram KW - mouse Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284056 SN - 1422-0067 VL - 23 IS - 4 ER - TY - JOUR A1 - Stegmann, Yannik A1 - Andreatta, Marta A1 - Pauli, Paul A1 - Wieser, Matthias J. T1 - Associative learning shapes visual discrimination in a web-based classical conditioning task JF - Scientific Reports N2 - Threat detection plays a vital role in adapting behavior to changing environments. A fundamental function to improve threat detection is learning to differentiate between stimuli predicting danger and safety. Accordingly, aversive learning should lead to enhanced sensory discrimination of danger and safety cues. However, studies investigating the psychophysics of visual and auditory perception after aversive learning show divergent findings, and both enhanced and impaired discrimination after aversive learning have been reported. Therefore, the aim of this web-based study is to examine the impact of aversive learning on a continuous measure of visual discrimination. To this end, 205 participants underwent a differential fear conditioning paradigm before and after completing a visual discrimination task using differently oriented grating stimuli. Participants saw either unpleasant or neutral pictures as unconditioned stimuli (US). Results demonstrated sharpened visual discrimination for the US-associated stimulus (CS+), but not for the unpaired conditioned stimuli (CS-). Importantly, this finding was irrespective of the US's valence. These findings suggest that associative learning results in increased stimulus salience, which facilitates perceptual discrimination in order to prioritize attentional deployment. KW - classical conditioning KW - fear conditioning KW - psychology KW - sensory processing KW - visual system Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260480 VL - 11 IS - 1 ER - TY - JOUR A1 - Schiele, Miriam A. A1 - Reinhard, Julia A1 - Reif, Andreas A1 - Domschke, Katharina A1 - Romanos, Marcel A1 - Deckert, Jürgen A1 - Pauli, Paul T1 - Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults JF - Developmental Psychobiology N2 - Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. KW - fear conditioning KW - fear generalization KW - development KW - skin conductance KW - maturation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189488 VL - 58 IS - 4 ER - TY - JOUR A1 - Manish, Asthana A1 - Nueckel, Katharina A1 - Mühlberger, Andreas A1 - Neueder, Dorothea A1 - Polak, Thomas A1 - Domschke, Katharina A1 - Deckert, Jürgen A1 - Herrmann, Martin J. T1 - Effects of transcranial direct current stimulation on consolidation of fear memory JF - Frontiers in Neuropsychiatric Imaging and Stimulation N2 - It has been shown that applying transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) influences declarative memory processes. This study investigates the efficacy of tDCS on emotional memory consolidation, especially experimental fear conditioning. We applied an auditory fear-conditioning paradigm, in which two differently colored squares (blue and yellow) were presented as conditioned stimuli (CS) and an auditory stimulus as unconditioned stimulus (UCS). Sixty-nine participants were randomly assigned into three groups: anodal, cathodal, and sham stimulation. The participants of the two active groups (i.e., anodal and cathodal) received tDCS over the left DLPFC for 12 min after fear conditioning. The effect of fear conditioning and consolidation (24 h later) was measured by assessing the skin conductance response (SCR) to the CS. The results provide evidence that cathodal stimulation of the left DLPFC leads to an inhibitory effect on fear memory consolidation compared to anodal and sham stimulation, as indicated by decreased SCRs to CS+ presentation during extinction training at day 2. In conclusion, current work suggests that cathodal stimulation interferes with processes of fear memory consolidation. KW - transcranial direct current stimulation KW - dorsolateral prefrontal cortex KW - fear conditioning KW - fear memory consolidation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97294 ER - TY - JOUR A1 - Guhn, Anne A1 - Dresler, Thomas A1 - Andreatta, Marta A1 - Müller, Laura D. A1 - Hahn, Tim A1 - Tupak, Sara V. A1 - Polak, Thomas A1 - Deckert, Jürgen A1 - Herrmann, Martin J. T1 - Medial prefrontal cortex stimulation modulates the processing of conditioned fear N2 - The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS−) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS− discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT). KW - fear conditioning KW - memory consolidation and extinction KW - learning KW - transcranial magnetic stimulation (TMS) KW - medial prefrontal cortex (mPFC) Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111309 ER - TY - JOUR A1 - Genheimer, Hannah A1 - Andreatta, Marta A1 - Asan, Esther A1 - Pauli, Paul T1 - Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans JF - Scientific Reports N2 - Since exposure therapy for anxiety disorders incorporates extinction of contextual anxiety, relapses may be due to reinstatement processes. Animal research demonstrated more stable extinction memory and less anxiety relapse due to vagus nerve stimulation (VNS). We report a valid human three-day context conditioning, extinction and return of anxiety protocol, which we used to examine effects of transcutaneous VNS (tVNS). Seventy-five healthy participants received electric stimuli (unconditioned stimuli, US) during acquisition (Day1) when guided through one virtual office (anxiety context, CTX+) but never in another (safety context, CTX−). During extinction (Day2), participants received tVNS, sham, or no stimulation and revisited both contexts without US delivery. On Day3, participants received three USs for reinstatement followed by a test phase. Successful acquisition, i.e. startle potentiation, lower valence, higher arousal, anxiety and contingency ratings in CTX+ versus CTX−, the disappearance of these effects during extinction, and successful reinstatement indicate validity of this paradigm. Interestingly, we found generalized reinstatement in startle responses and differential reinstatement in valence ratings. Altogether, our protocol serves as valid conditioning paradigm. Reinstatement effects indicate different anxiety networks underlying physiological versus verbal responses. However, tVNS did neither affect extinction nor reinstatement, which asks for validation and improvement of the stimulation protocol. KW - psychology KW - vagus nerve stimulation KW - contextual anxiety KW - fear conditioning KW - extinction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169892 VL - 7 IS - 17886 ER - TY - JOUR A1 - Dittert, Natalie A1 - Hüttner, Sandrina A1 - Polak, Thomas A1 - Herrmann, Martin J. T1 - Augmentation of fear extinction by transcranial direct current stimulation (tDCS) JF - Frontiers in Behavioral Neuroscience N2 - Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS- discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS- in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS-. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies. KW - brain stimulation KW - fear conditioning KW - skin conduction response KW - tDCS KW - ventromedial prefrontal cortex Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176056 VL - 12 IS - 76 ER - TY - JOUR A1 - Asthana, Manish Kumar A1 - Brunhuber, Bettina A1 - Mühlberger, Andreas A1 - Reif, Andreas A1 - Schneider, Simone A1 - Herrmann, Martin J. T1 - Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism JF - International Journal of Neuropsychopharmacology N2 - Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. KW - BDNF KW - brain derived neurotrophic factor KW - fear conditioning KW - genetics memory KW - reconsolidation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166217 VL - 19 IS - 6 ER -