TY - JOUR A1 - Schanbacher, Constanze A1 - Hermanns, Heike M. A1 - Lorenz, Kristina A1 - Wajant, Harald A1 - Lang, Isabell T1 - Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling JF - Biomedicines N2 - Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction. KW - adiponectin KW - AMPK KW - C1q/TNF related protein (CTRP) KW - inflammation KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304136 SN - 2227-9059 VL - 11 IS - 2 ER - TY - JOUR A1 - Nwogha, Jeremiah S. A1 - Abtew, Wosene G. A1 - Raveendran, Muthurajan A1 - Oselebe, Happiness O. A1 - Obidiegwu, Jude E. A1 - Chilaka, Cynthia A. A1 - Amirtham, Damodarasamy D. T1 - Role of non-structural sugar metabolism in regulating tuber dormancy in white yam (Dioscorea rotundata) JF - Agriculture N2 - Changes in sugar composition occur continuously in plant tissues at different developmental stages. Tuber dormancy induction, stability, and breaking are very critical developmental transitions in yam crop production. Prolonged tuber dormancy after physiological maturity has constituted a great challenge in yam genetic improvement and productivity. In the present study, biochemical profiling of non-structural sugar in yam tubers during dormancy was performed to determine the role of non-structural sugar in yam tuber dormancy regulation. Two genotypes of the white yam species, one local genotype (Obiaoturugo) and one improved genotype (TDr1100873), were used for this study. Tubers were sampled at 42, 56, 87, 101, 115, and 143 days after physiological maturity (DAPM). Obiaoturugo exhibited a short dormant phenotype and sprouted at 101-DAPM, whereas TDr1100873 exhibited a long dormant phenotype and sprouted at 143-DAPM. Significant metabolic changes were observed in non-structural sugar parameters, dry matter, and moisture content in Obiaoturugo from 56-DAPM, whereas in TDr1100873, significant metabolic changes were observed from 101-DAPM. It was observed that the onset of these metabolic changes occurred at a point when the tubers of both genotypes exhibited a dry matter content of 60%, indicating that a dry matter content of 60% might be a critical threshold for white yam tuber sprouting. Non-reducing sugars increased by 9–10-fold during sprouting in both genotypes, which indicates their key role in tuber dormancy regulation in white yam. This result implicates that some key sugar metabolites can be targeted for dormancy manipulation of the yam crop. KW - sugars KW - metabolism KW - yam KW - tuber KW - genotypes KW - dormancy KW - regulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304486 SN - 2077-0472 VL - 13 IS - 2 ER - TY - THES A1 - Kellert, Marco T1 - Untersuchungen zum Metabolismus von Furan in Ratte und Maus, sowie zur Reaktivität und Gentoxizität von cis-2-Buten-1,4-dial in vitro und in Zellkultur T1 - Metabolism of furan in rats and mice and tests for the reactivity and genotoxicity of cis-2-butene-1,4-dial in vitro and in cell culture. N2 - Furan wird in einer Vielzahl von Speisen durch Hitzebehandlung gebildet und ist kanzerogen in der Leber von Ratte und Maus. Durch die hohe Flüchtigkeit von Furan ist eine Expositionsabschätzung auf Basis der Kontamination von Lebensmitteln nur bedingt möglich. Ein alternativer Ansatz dazu ist die Identifizierung von Furanmetaboliten als Expositions­biomarker. Nach der Aufnahme wird Furan zunächst zum Dialdehyd cis-2-Buten-1,4-dial oxidiert. cis-2-Buten-1,4-dial besitzt mehrere elektrophile Strukturelemente, welche eine Reaktion mit Protein und DNS wahrscheinlich machen und damit zur bekannten Toxizität von Furan beitragen können. Es stellt sich in diesem Zusammenhang die Frage, ob eine Reaktion mit Protein die Reaktion mit der DNS verhindern kann und somit keine direkt gentoxischen Effekte auftreten. Für ein kanzerogenes Agens ohne direkte gentoxische Wirkung kann eine Schwellendosis unterhalb derer kein DNS-Schaden auftritt diskutiert werden. Für eine fundierte Risikobewertung bezüglich der Aufnahme von Furan über die Nahrung ist dies unabdingbar. In der vorliegenden Arbeit wurde nach der oralen Gabe von Furan im Urin von Fischer 344 Ratten nach Metaboliten gesucht. Eine Kontrollgruppe erhielt nur die Trägersubstanz Öl. Das vor und nach Exposition über jeweils zwei 24 Stunden Perioden gesammelte Urin wurde mittels einer Tandemmassenspektrometrie-Methode analysiert. Die Methode bestand aus einem Full-Scan und einer darüber gesteuerten Aufzeichnung eines Fragmentionenspektrums. Die Full-Scan-Daten wurden mit Hilfe der Hauptkomponentenanalyse untersucht. In der ersten Sammelperiode nach der Behandlung konnten durch die erste Hauptkomponente die behandelten von den unbehandelten Tieren getrennt werden. Aus den für die Trennung relevanten Verbindungen konnten fünf Biomarker strukturell aufgeklärt werden. In einer weiteren Tierstudie an Ratten und Mäusen wurde die Kinetik und die Dosis-Wirkungs-Beziehung der identifizierten Biomarker untersucht. Die gezielte LC-MS/MS-Analyse der Urine auf die identifizierten Biomarker hin zeigte, dass in der Ratte alle und in der Maus alle bis auf einen dosisabhängig anstiegen. Die Kinetik der Ausscheidung lieferte wertvolle Hinweise auf die Entstehung der Biomarker. Die Ausscheidung der Biomarker mit Lysinstruktur erfolgte über mehr als 72 Stunden. Dies war ein Hinweis auf eine Freisetzung aus Protein. Die Ausscheidung der restlichen Verbindungen erfolgte ausschließlich in den ersten 24 Stunden. Die in der Literatur vorhandenen Daten zur Gentoxizität von Furan und cis-Buten-1,4-dial sind unschlüssig und unvollständig. In der vorliegenden Arbeit wurde cis-2-Buten-1,4-dial im Ames Stamm TA104 und in L5178Y Mauslymphomzellen auf Mutagenität und Gentoxizität untersucht. Durch starke Zytotoxizität war der Konzentrationsbereich auf 4.5 µmol/Platte limitiert. Innerhalb dieses Bereich konnte mit der Vorinkubationsvariante des Ames-Tests keine Mutagenität beobachtet werden. Die L5178Y Mauslymphomzellen wurden mit Standardprotokollen für den Mikrokern-Test, Kometen-Test und den Thymidinkinase-Test untersucht. Der Konzentrationsbereich von cis-2-Buten-1,4-dial erstreckte sich bis 100 µM, konnte aber auf Grund der starken Zytotoxizität nur bis 25 µM ausgewertet werden. Dennoch konnte bereits in diesem Bereich ein 1.7- bzw. 2.2-facher Anstieg im Kometen- bzw. Thymidinkinase-Test beobachtet werden. Verglichen mit der Positivkontrolle Methylmethansulfonat hatte cis-2-Buten-1,4-dial bei einer deutlich höheren Zytotoxizität eine ähnliche Potenz bezüglich der Mutagenität und Gentoxizität. Um das DNS-vernetzende Potential von cis-2-Buten-1,4-dial zu bestimmen wurde eine Variante des Kometen-Tests verwendet. Es wurde dabei untersucht, ob die Vorbehandlung von Zellen mit cis-2-Buten-1,4-dial die durch γ-Strahlung induzierbaren Kometen reduzieren kann. Während die Positivkontrolle Glutaraldehyd die Kometen tatsächlich verringerte, blieb dieser Effekt bei cis-2-Buten-1,4-dial aus. Im Gegenteil, bei einer Konzentration von ≥100 mM konnte durch die Zunahme von Zellen mit beginnender Apoptose ein Anstieg der Kometen beobachtet werden. Obwohl cis-2-Buten-1,4-dial sehr deutliche gentoxische und mutagene Effekte zeigte, beschränkte die hohe Zytotoxizität den auswertbaren Bereich. Möglicherweise kann diese Problematik einen Teil der unschlüssigen Ergebnisse erklären, sicher ist jedoch, dass für die Untersuchung der Mechanismen der Toxizität und Kanzerogenität ein Beitrag von nicht gentoxischen Effekten diskutiert werden muss. N2 - Furan has been found in a number of heated food items and is carcinogenic in the liver of rats and mice. Estimates of human exposure on the basis of concentrations measured in food are not reliable because of the volatility of furan. A biomarker approach was therefore indicated. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial. In view of the multifunctional electrophilic reactivity of cis-2-butene-1,4-dial, adduct formation with protein and DNA may explain some of the toxic effects. DNA-adduction is a direct genotoxic effect. The major question was weather a direct genotoxicity of cis-2-butene-1,4-dial could be prevented by the reaction with protein structures. If so, the genotoxic and mutagenic effects are likely to show a threshold dose, reducing the cancer risk for low exposure levels. We searched for metabolites excreted in the urine of male Fischer 344 rats treated by oral gavage with 40 mg furan per kg body weight. A control group received the vehicle oil only. Urine collected over two 24-hour periods both before and after treatment was analyzed by a column-switching LC-MS/MS method. Data were acquired by a full scan survey scan in combination with information dependent acquisition of fragmentation spectra by the use of a linear ion trap. The full scan data was analyzed by principal component analysis (PCA). The first principal component fully separated the samples of treated rats from the controls in the first post-treatment sampling period. Five of the compounds that are responsible for the separation could be identified as the reaction product of cis-2-butene-1,4-dial with either glutathion or lysine (protein). In a second animal study rats and mice were treated with seven different doses of furan in the range from 125 µg to 8 mg per kg body weight. Dose-response and kinetic over 72 h of the seven identified biomarkers was examined by LC-MS/MS in the urine. In the rats all biomarkers showed a dose-dependent increase. In the mice one biomarker lacked of dose dependency. Different excretion profiles were attributed to the formation of either protein adducts or glutathione conjugates. Whereas the protein-derived biomarkers with a lysin moiety showed a slow excretion over more than 72 h, the glutathion-dervived biomarkers were only excreted within the first 24 h. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for cis-2-butene-1,4-dial. We investigated cis-2-butene-1,4-dial generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity and mutagenicity in Salmonella typhimurium (Strain TA104) and in L5178Y mouse lymphoma cells. The Ames Test was negative in the preincubation assay with and without reduction of cytotoxicity by addition of glutathione after preincubation phase. Remarkable cytotoxicity limited the analysis range up to 4.5 µmol/plate. Mutagenicity and genotoxicicty in L5178Y mouse lymphoma cells was evaluated using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay. cis-2-butene-1,4-dial was tested at 0, 6.25, 12.5, 25, 50, and 100 µM. Cytotoxicity was remarkable; cell viability at 50 µM was reduced to <50%. Up to 25 µM, cell viability was >90%, and measures of comet assay and thymidine kinase mutations were increased over control about 1.7 an 2.2-fold, respectively. Compared to methyl methanesulfonate used as positive control, cis-2-butene-1,4-dial was of similar potency for genotoxicity but much more cytotoxic. A potential cross-linking activity of cis-2-butene-1,4-dial was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pretreatment with cis-2-butene-1,4-dial. As opposed to the effect of the positive control glutaraldehyde, cis-2-butene-1,4-dial treatment did not reduce the comets. On the contrary, an increase was observed at ≥100 µM cis-2-butene-1,4-dial, which was attributable to early apoptotic cells. Although cis-2-butene-1,4-dial was found to be a relatively potent genotoxic agent in terms of the concentration necessary to double the background measures, cytotoxicity strongly limited the concentration range that produced interpretable results. This may explain some of the inconclusive results and indicates that nongenotoxic effects must be taken into account in the discussion of modes of toxic and carcinogenic action of furan. KW - Metabolismus KW - Mutagenität KW - Biomarker KW - Furan KW - LC-MS KW - Harn KW - cis-2-Buten-1 KW - 4-dial KW - Gentoxizität KW - furan KW - metabolism KW - biomarker KW - mutagenicity KW - genotoxicity Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28716 ER - TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER -