TY - JOUR A1 - Strube-Bloss, Martin F. A1 - Brown, Austin A1 - Spaethe, Johannes A1 - Schmitt, Thomas A1 - Rössler, Wolfgang T1 - Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris JF - PLoS One N2 - To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors. KW - instinct KW - plant-insect interactions KW - pheromones KW - bumblebees KW - odorants KW - principal component analysis KW - neurons KW - action potentials Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125875 VL - 10 IS - 9 ER - TY - JOUR A1 - Stefanakis, Mona A1 - Bassler, Miriam C. A1 - Walczuch, Tobias R. A1 - Gerhard-Hartmann, Elena A1 - Youssef, Almoatazbellah A1 - Scherzad, Agmal A1 - Stöth, Manuel Bernd A1 - Ostertag, Edwin A1 - Hagen, Rudolf A1 - Steinke, Maria R. A1 - Hackenberg, Stephan A1 - Brecht, Marc A1 - Meyer, Till Jasper T1 - The impact of tissue preparation on salivary gland tumors investigated by Fourier-transform infrared microspectroscopy JF - Journal of Clinical Medicine N2 - Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows. KW - formalin KW - fixation KW - tissue preparation KW - salivary gland neoplasia KW - FTIR spectroscopy KW - principal component analysis KW - discriminant analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304887 SN - 2077-0383 VL - 12 IS - 2 ER - TY - JOUR A1 - Becht, Alexander A1 - Schollmayer, Curd A1 - Monakhova, Yulia A1 - Holzgrabe, Ulrike T1 - Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis JF - Analytical and Bioanalytical Chemistry N2 - Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6%/99.6% and 98.7/100% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer. KW - \(^{1}\)HNMR KW - IR KW - manufacturer KW - linear discriminant analysis KW - principal component analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265400 VL - 413 IS - 11 ER - TY - JOUR A1 - Bassler, Miriam C. A1 - Knoblich, Mona A1 - Gerhard-Hartmann, Elena A1 - Mukherjee, Ashutosh A1 - Youssef, Almoatazbellah A1 - Hagen, Rudolf A1 - Haug, Lukas A1 - Goncalves, Miguel A1 - Scherzad, Agmal A1 - Stöth, Manuel A1 - Ostertag, Edwin A1 - Steinke, Maria A1 - Brecht, Marc A1 - Hackenberg, Stephan A1 - Meyer, Till Jasper T1 - Differentiation of salivary gland and salivary gland tumor tissue via Raman imaging combined with multivariate data analysis JF - Diagnostics N2 - Salivary gland tumors (SGTs) are a relevant, highly diverse subgroup of head and neck tumors whose entity determination can be difficult. Confocal Raman imaging in combination with multivariate data analysis may possibly support their correct classification. For the analysis of the translational potential of Raman imaging in SGT determination, a multi-stage evaluation process is necessary. By measuring a sample set of Warthin tumor, pleomorphic adenoma and non-tumor salivary gland tissue, Raman data were obtained and a thorough Raman band analysis was performed. This evaluation revealed highly overlapping Raman patterns with only minor spectral differences. Consequently, a principal component analysis (PCA) was calculated and further combined with a discriminant analysis (DA) to enable the best possible distinction. The PCA-DA model was characterized by accuracy, sensitivity, selectivity and precision values above 90% and validated by predicting model-unknown Raman spectra, of which 93% were classified correctly. Thus, we state our PCA-DA to be suitable for parotid tumor and non-salivary salivary gland tissue discrimination and prediction. For evaluation of the translational potential, further validation steps are necessary. KW - salivary gland tumor KW - confocal Raman imaging KW - principal component analysis KW - discriminant analysis KW - multivariate data analysis KW - molecular diagnostics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-355558 SN - 2075-4418 VL - 14 IS - 1 ER -