TY - THES A1 - Seres, Enikõ T1 - Ultraschnelle zeitaufgelöste Absorptionsspektroskopie im weichen Röntgenbereich T1 - Ultrafast timeresolved absorptionspectroscopy in soft X-ray regime N2 - Bis in die 50er Jahren wurden ausschließliche Röntgenröhren in der Röntgenspektroskopie benutzt. (Parratt, 1938). In den 50er Jahren wurden die ersten Synchrotrons gebaut und für die Spektroskopie im Röntgenbereich angewendet. (Blocker et al., 1950). Die auch noch heute verwendeten Techniken wurden zum ersten Mal 1948 (Elder et al. 1948) in der Literatur beschrieben. Doch es dauerte Jahrzehnte, bis mit den neu zur Verfügung stehenden Synchrotrons die statische Röngendiffraktometrie zur röntgenspektroskopischen Strukturaufklärung routinemäßig benutzt werden konnte. Diese Entwicklungen werden bis heute fortgeführt und ebneten den Weg für viele Anwendungen. Während dieser Zeit ist auch ein anderer Wissenschaftszweig entstanden, die Lasertechnik. Diese ist seit dieser Zeit auch enorm gewachsen, und jetzt fordert sie auch die Synchrotrons bei der zeitaufgelösten Röntgenspektroskopie heraus. Die Laserstrahlung war am Anfang kontinuierlich. Erst durch die späteren Entwicklungen konnte ein gepulster Betrieb realisiert werden. Mit der Zeit wurden die Laserpulse immer kürzer und die Pulsenergie ist immer mehr gewachsen. Die kurze Pulsdauer der Laser wird in so genannten Pump-Probe Messungen verwendet: damit können schnelle Änderungen, die von einem Pumppuls ausgelöst werden mit einem Probepuls verfolgt werden. Die Auflösung der Messung ist durch die Pulsdauer gegeben. Die Pulsdauer wurde in den letzten Jahrzehnten vom Nanosekunden- bis in den Femtosekundenbereich reduziert. Hier ergibt sich aber nicht etwa eine technologische Grenze sondern eine fundamentale. Die zurzeit kürzesten Laserpulse haben eine Dauer von einigen wenigen Femtosekunden und sind damit schon sehr nahe der Periodendauer einer optischen Schwingung, die ebenfalls 1 bis 2fs beträgt. Allerdings zeigt sich auch, dass mit den zur Verfügung stehenden Laserpulsen die Zeitauflösung ausreicht um fast alle Vorgängen zu beobachten. Nur ist die Interpretation manchmal sehr schwierig, wenn es gilt das gemessene Signal einer atomaren Bewegung zuzuordnen. Abhilfe schafft hier die Verwendung von Röntgenstrahlung, die hervorragend geeignet ist Strukturinformation direkt zu erhalten. Wenn die Strahlung gepulst ist kann damit auch die Dynamik der Struktur erfasst werden. Ein Erfolg versprechender Ansatz zur Erzeugung von Röntgenpulsen mit einer Dauer von einigen Femtosekunden ist die Konversion von ultrakurzen Laserpulsen in den Röntgenbereich. Heute dazu erfolgreich demonstrierte Techniken sind die Laser-Plasmaquellen oder die hoher Harmonische Erzeugung (HHG). Die Plasmaquellen erzeugen im keV Energiebereich Röntgenphotonen – aber nur mit einer Pulsdauer von einigen 100fs. HHG ist hingegen eine interessante Alternative, die Pulse mit einer Dauer im Attosekundenbereich erzeugen kann. Allerdings war der Spektralbereich bis vor kurzem auf einige 100eV beschränkt. Eine Ausweitung des Spektrums von HHG Strahlung in den keV Bereich macht die Quelle aber erst wirklich einsetzbar für Messungen an technisch und wissenschaftlich interessanten Systemen. Im Energiebereich des Wasserfensters (ca 300 bis 600eV) können biologische Prozesse mit einer Zeitauflösung im ps-fs Bereich verfolgt werden. Im höheren Energiebereich von ca. 700eV kann man die magnetischen Eigenschaften von Selten-Erdmetallen beobachten. Diese Arbeit ist der Entwicklung einer laserbasierten HH-Quelle und deren Anwendung in der zeitaufgelösten Spektroskopie gewidmet. Es sollte herausgefunden werden, welche Anforderungen werden an das Lasersystem in Bezug auf Pulsparameter gestellt, um damit Spektroskopie in einem Bereich bis zu 1keV zu machen. Auch sollte geklärt werden, welche spektroskopischen Methoden sind möglich und wo liegen ihre Grenzen. In dieser Arbeit wurde sehr viel Neuland betreten, sowohl auf dem Gebiet der Lasertechnik als auch auf der Entwicklung der HH Quelle. Darüber hinaus ist diese Arbeit die erste Arbeit die sich mit Anwendung von HH-Strahlung für zeitaufgelöste Röntgenabsorptionsspektroskopie befasst. Das zweite Kapitel befasst sich mit den Grundlagen der Röntgenspektroskopie. Bei der Wechselwirkung von Röntgenstrahlung mit Materie wird die elektronische Struktur, die Elektronenverteilungen der Atome oder Moleküle verändert: Man kann die Elektronen in das Valenzband oder in das Kontinuum anregen. Die in das Kontinuum anregten Elektronen können gleichzeitig mit den Nachbaratomen wechselwirken, und von diesen rückstreuen. Diese Wechselwirkung wird durch elektronische Struktur, die elektronische Verteilung der Atome und Moleküle beeinflusst. Diese Vorgänge verändern die Röntgenabsorption des Materials. Durch die Messung der Veränderung der Röntgenabsorption kann man auf die atomare Struktur, die atomare Abstände folgern. Diese Messungen wurden bisher mit Synchrotronstrahlung durchgeführt, deren Pulsdauer bisher nicht kürzer als einige ps war, und damit nicht den schnellsten Änderungen folgen konnte. Ein Lasersystem mit höherer Energie und kürzerer Pulsdauern ist der Schlüssel zu hochzeitaufgelösten Experimenten. Die Entwicklung eines solchen Lasersystems ist im dritten Kapitel beschrieben. Erster Teil des Kapitels erklärt die Probleme, die durch den Verstärkungsprozess auftreten. Die spektrale Einengung und der Energieverlust sind immer die am schwierigsten zu lösenden Probleme in einem Verstärkersystem. Wegen der nötigen zeitliche Pulsdehnung und der folgenden Pulskompression erleidet der Puls einen Energieverlust. Die nichtlinearen Effekte verursachen spektrale Einengung im Verstärkerkristall. Um diese Nachteile zu vermeiden dienen die unterschiedlichen Techniken, wie die Verwendung einer gasgefüllten Hohlfaser zur nichtlinearen spektralen Verbreiterung und unterschiedlicher Pulsformungstechniken (akustooptische Modulator, LCD,…). Der verbleibende Teil des Kapitels stellt diese Methoden, ihre Vorteilen und Nachteile dar. Abschließend sind die Erfolge bei der Entwicklung des Lasersystems vorgestellt: Nach allen Optimierungen wurden Pulse mit einer Energie von 3mJ und einer Dauer von 12fs realisiert. Die erste Verwendung des neuen Systems war die Erzeugung hoher Harmonischer mit konventioneller Technik. Diese Technik basiert auf einem Aufbau mit einem Gastarget in das die Laserpulse fokussiert werden. Das vierte Kapitel beschreibt die Theorie und Schwierigkeiten des Erzeugungsprozesses durch die Erklärung der grundlegenden mikroskopischen (Erzeugung) und die makroskopischen Effekte (Ausbreitungseffekte) im Gastarget. Das Problem der niederen Konversionseffizienz im hochenergetischen Bereich kann gelöst werden, wenn die neu entwickelte Technik, die als nichtadiabatische Phasenanpassung schon in der Literatur existiert hat, angewendet wird. Sie beruht auf einer starken Fokussierung von extrem kurzen Pulsen und ermöglicht Erzeugung von Röntgenphotonen mit Energien bis zu 3,5keV. Mit diesen schönen Erfolgen wurden die ersten statischen spektroskopischen Experimente durchgeführt. Die aufgenommenen Spektren zeigen schöne Absorptionskanten bei Titan, Kupfer, und Neon, Platin. Die Auswertungen dieser Spektren zeigen, dass es genügend Photonen bis 1keV gibt und ermöglichen so die Anwendung der so genannten EXAFS Technik. Im fünften Kapitel werden die gemessene Röntgenspektren und die mit der EXAFS Methode ermittelten atomaren Abständen von Silizium, Titan und Kupfer, dargestellt. Dieses Kapitel beschreibt ferner unsere ersten erfolgreichen Experimenten zur zeitaufgelöste Röntgenabsorptionsspektroskopie in der Nähe der Silizium L-Kante bei 100eV. Die Zeitauflösung, die mit Hilfe der Pump-Probe Technik erzielt werden konnte war besser als 20fs. Die Messungen wurden in einem weiten Energie – und Zeitbereichen durchgeführt: im Bereich von 0-100ps und 0-1ps, sowie von ca. 70eV bis 500eV. Die bestimmten Zeitkonstanten, stimmen mit in der Literatur angegebenen Werten für die unterschiedlichen Relaxationsprozessen sehr gut überein. N2 - Until the 50s years, the X-ray tubes were used in the X-ray spectroscopy. The first synchrotrons appeared in the 50s years and it took several tens years, when they were applied for the static X-ray diffractrometry and the X-ray structure analysis became routine technique. These techniques are under development up to now for the broadened application areas. During this time, a new area of the physics appeared as e.g. the laser technique. They developed and bloomed meantime and now they challenge the synchrotrons to make more effort in the X-ray spectroscopy. The laser light was continuum at first, but later the pulse operation spread and the aim become to reach possible shortest pulse. The pulse mode makes possible to use the pump-probe technique. The probe pulse sans and tests the effect of the first-coming pump pulse. The resolution of the measurement is defined by the pulse duration of the pulses. This tented from the nanosecond to the femtosecond timescale. Now the metrology works close to the duration of one optical period. In this area, the scientist is not only by the technological rather by a fundamental border. By the application of the commercial pump-probe technique one can gather dynamic information usually in the IR wavelength scale. Near to the atomic scale, one can observe the structure of the material – and by the application of the X-ray pulses is possible to examine the processes, their development and evolutions deeply in the material, close to the atomic and molecular structure. The available X-ray techniques deliver X-ray pulses: the plasma sources can produce keV pulses in the few hundred fs regime. The slicing technique compressed the pulse duration of the synchrotrons down to few hundred fs also. The High Harmonic Generation (HHG) is the only existing technique for single attosecond pulse generation in the 100 eV regime. The development of the HHG forward to the keV energy opens the way for fast spectroscopic measurements in the water-window with fs pulses. The biology waits for a long time for direct observation of the fast organic processes in the fs regime. The 700 eV reaches the limit of the magnetic earth-metal spectroscopy. This work is devoted to the development and application of a laser based HH Source. The exact parameterisation and optimisation of the laser system is inevitable for the keV spectroscopy. It is clarified, which methods are acceptable and which works at their edges. This work describes the development of a laser system, which - application as an X-ray source - reached and overstepped the keV regime. This is the first work, which is devoted to the application of the HH radiation for time resolved absorption spectroscopy. The second chapter describes the bases of the X-ray spectroscopy. The interaction of the X-ray and material changes the electronic structure, the electron distribution of the atoms or molecules: the electrons can be excited from the valence band into the conduction band. The electrons, which are excited in the continuum, can interact with the neighbour atoms, from when they can backscatter. This interaction is affected by the electronic structure and the electronic distribution of the atom and molecules. The processes change the X-ray absorption of the materials. Through the measurements of these modifications can conclude to the atomic structure and atomic distances. Up top now were made these measurements with synchrotron radiation, which pulse duration was not shorter as ps. Therefore they could not observe the faster modifications. These experiments demand a laser system with high energy and short laser pulses. The third chapter describes the development of such a laser system, the appeared and solved problems. The non linear effects and the energy losses are always the hardest problems at an amplifier system. Because of the necessary pulse stretching and compression, the pulse suffers significant energy loss. The non-linear affects cause spectral narrowing in the amplifier crystal. These disadvantages can be compensated and corrected by the use of the pulse shaping techniques, like the acustooptic modulator, LCD. The end of the chapter describes results of the development: after optimisation all of the possible parameters were measured, the energy and the duration of the output pulse: 3 mJ at 12 fs. The first application of the system was the High Harmonic Generation. The conventional technique based on a gas target, in which the laser beam is focused strongly. The fourth chapter describes the theoretic possibilities and limits of the process: in the microscopic (HH generation) and the macroscopic (pulse propagation) metric. These drawbacks can be compensated by the non adiabatic self phase matching, which was already detailed in the literature. This technique based on the strongly focusing of the very short laser pulses into the gas target and its application made possible to generate X-ray photons up to 3.5 keV. With these pulses were carried out the static spectroscopic experiments. The recorded spectra shows nice absorption edges at the Titanium, Copper, Neon and Platinum. The number of the genereated X-ray photons was enough to make EXAFS measurements. The fifth chapter shows the measured spectra, the evaluated EXAFS spectra with the estimated atomic distances of the silicon, titanium and copper. The time resolution of the pump-probe measurements was less than 20 fs. It was realized in two regimes: from 0-100 ps and from 0-1ps. The determined time constants are in good agreement with the literature values. KW - Röntgenabsorptionsspektroskopie KW - Femtosekundenspektroskopie KW - HHG KW - keV KW - zeitaufgelöste Spektroskopie KW - fs KW - HHG KW - keV KW - timeresolved spectroscopy KW - fs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16417 ER - TY - THES A1 - Margraf, Markus Johann T1 - Spektroskopie an π-konjugierten Molekülen T1 - Spectroscopy of π-conjugated molecules N2 - Femtosekunden-zeitaufgelöste transiente Absorptionsspektroskopie einer neutralen organischen gemischtvalenten Verbindung In einem Femtosekunden-zeitaufgelösten Anrege-Abfrage-Experiment wurde die Dynamik des Elektronentransfers einer neutralen organischen gemischtvalenten Verbindung untersucht. Neben der Abhängigkeit des Rückelektronentransfers von der Solvenspolarität wurde auch die Rotationsdiffusion in n-Hexan, Toluol, Dibutylether, tert-Butylmethylether und Benzonitril studiert. Die transiente Dynamik lässt sich mit einer Lebensdauer beschreiben, verursacht durch einen Rückelektronentransfer. Während dieser in unpolaren Lösemitteln relativ langsam verläuft, beobachtet man deutlich schnellere ET-Raten mit steigender Polarität des Lösemittels. Die Lebensdauer variiert von 1.2 ps für Benzonitril bis 260 ps für n-Hexan. Rotationsdiffusion konnte nicht beobachtet werden. Die gemessenen Raten wurden mit theoretischen Raten verglichen. Für unpolare Lösemittel konnte eine gute Übereinstimmung gefunden werden. In polaren Lösemitteln bewirkt eine Korrektur, die die Solvensrelaxationszeit berücksichtigt, eine sehr gute Übereinstimmung von berechneten und gemessenen Rückelektronentransferraten. Zeit- und frequenzaufgelöste Photoionisation des C 2A2-Zustandes des Benzylradikals Die Lebensdauer des C 2A2-Zustandes des Benzylradikals wurde in Abhängigkeit der Überschussenergie bestimmt. Die zeitabhängigen Ionensignale konnten dabei mit einer biexponentiellen Dynamik beschrieben werden. Bei einer Anregung am Ursprung (305nm) betragen die Lebensdauern τ1= 400 fs und τ2 = 4.5 ps. Die kürzere Lebensdauer τ1 beschreibt die interne Konversion vom C-Zustand zu den stark koppelnden A/B-Zuständen, die längere Lebensdauer τ2 die interne Konversion von den A/B-Zuständen in den elektronischen Grundzustand. Mit steigender Anregungsenergie beobachtet man eine stete Abnahme beider Lebensdauern. Bei einer Anregung mit einem Puls der Wellenlänge von 301 nm beobachtet man deutlich kürzere Lebensdauern mit τ1 = 350 fs und τ2 = 2.8 ps. Erfolgt die Anregung mit einem Puls der Wellenlänge von 298 nm, betragen die Zeitkonstanten τ1 = 180 fs und τ2 = 2.1 ps. Desweiteren konnte ein zeitabhängiges Ionensignal für eine Spezies mit der Zusammensetzung C7H5 beobachtet werden. Der Träger des Signals ist das Fulvenallenylradikal. N2 - Femtosecond time-resolved transient absorption spectroscopy of a neutral organic mixed-valenced compound The dynamics of electron transfer of a neutral organic mixed-valence compound was investigated by femtosecond transient absorption spectroscopy. Both dependence of back-electron transfer on solvent polarity and rotational diffusion was studied in n-hexane, toluene, dibutylether, methyl-tert-butyl ether and benzonitrile. The transient kinetics is governed by one time constant which is assigned to back-electron transfer. It ranges from 1.2 ps in benzonitrile to 260 ps in n-hexane. While back electron transfer is slow in non-polar solvents increasing back-electron transfer rates with increasing solvent polarity are observed. No rotational diffusion was observed. The measured rates for back-electron transfer were compared to rates derived from a Golden rule-type expression. Good agreement was achieved with non-polar solvents. In polar solvents, a correction using the solvent relaxation times yielded an excellent agreement between computed and observed back-electron transfer rates. Time- and frequency-resolved photoionization of the C 2A2 state of the benzyl radical The excited state lifetime of the C 2A2 state of the benzyl radical was determined as a function of excess energy. Time-dependent ion traces were fitted using a biexponential decay. At the origin of the C-state, excited state lifetimes of 400 fs and 4.5 ps were assigned to sequential internal conversion processes from the C-state to the A/B states and to the ground state. With increasing excitation, the lifetimes shorten considerably. With excitation at 301 nm the time constants are 350 fs and 2.8 ps. At 298 nm the time constants are 180 fs and 2.1 ps. In addition we observed a decay trace for a species with the composition C7H5. The carrier of the signal is fulvenallenyl. KW - Valenzgemischte Verbindungen KW - Absorptionsspektroskopie KW - Benzylradikal KW - Photoionisation KW - zeitaufgelöste Spektroskopie KW - gemischtvalente Verbindung KW - time-resolved spectroscopy KW - mixed-valence compound KW - benzyl radical Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54032 ER - TY - THES A1 - Eckstein, Klaus T1 - Linear and Nonlinear Spectroscopy of Doped Carbon Nanotubes T1 - Lineare und Nichtlineare Spektroskopie von dotierten Kohlenstoffnanoröhren N2 - Doping plays a decisive role for the functionality of semiconductor-based (opto-)electronic devices. Hence, the technological utilization of semiconductors necessitates control and a fundamental understanding of the doping process. However, for low-dimensional systems like carbon nanotubes, neither concentration nor distribution of charge carriers is currently well known. The research presented in this thesis investigated the doping of semiconducting carbon nanotubes by spectroscopic methods. Samples of highly purified, intrinsic (6,5) single-wall carbon nanotubes were fabricated using polymer stabilization. Chapter 4 showed that both electro- and redox chemical $p$-doping lead to identical bleaching, blueshift, broadening and asymmetry of the S$_1$ exciton absorption band. The similar spectral changes induced by both doping schemes suggest that optical spectra can not be used to infer what process was used for doping. Perhaps more importantly, it also indicates that the distribution of charges and the character of the charge transfer states does not depend on the method by which doping was achieved. The detailed analysis of the doping-induced spectral changes in chapter 5 suggests that surplus charges are distributed inhomogeneously. The hypothesis of carrier localization is consistent with the high sensitivity of the S$_1$ exciton photoluminescence to additional charge carriers and with the stretched-exponential decay of the exciton population following ultrafast excitation. Both aspects are in good agreement with diffusion-limited contact quenching of excitons at localized charges. Moreover, localized charges act – similar to structural defects – as perturbations to the bandstructure as evidenced by a doping-induced increase of the D-band antiresonance in the mid-infrared spectrum. Quantum mechanical model calculations also suggest that counterions play a crucial role in carrier localization. Counterion adsorption at the nanotube surface is thus believed to induce charge traps of more than 100 meV depth with a carrier localization length on the order of 3 - 4 nm. The doping-induced bleach of interband absorption is accompanied by an absorption increase in the IR region below 600 meV. The observed shift of the IR peak position indicates a continuous transition from localized to rather delocalized charge carriers. This transition is caused by the increase of the overlap of charge carrier wavefunctions at higher charge densities and was modeled by classical Monte-Carlo simulations of intraband absorption. Chapter 6 discussed the spectroscopy of heavily (degenerately) doped nanotubes, which are characterized by a Drude-response of free-carrier intraband absorption in the optical conductivity spectrum. In the NIR spectral region, the S$_1$ exciton and X$+^_1$ trion absorption is replaced by a nearly 1 eV broad and constant absorption signal, the so-called H-band. The linear and transient absorption spectra of heavily doped nanotubes suggest that the H-band can be attributed to free-carrier interband transitions. Chapter 7 dealt with the quantification of charge carrier densities by linear absorption spectroscopy. A particularly good measure of the carrier density is the S$_1$ exciton bleach. For a bleach below about 50 %, the carrier density is proportional to the bleach. At higher doping levels, deviations from the linear behavior were observed. For doping levels exceeding a fully bleached S$_1$ band, the determination of the normalized oscillator strength f$\text{1st}$ over the whole first subband region (trion, exciton, free e-h pairs) is recommended for quantification of carrier densities. Based on the nanotube density of states, the carrier density $n$ can be estimated using $n = 0.74\,\text{nm}^{−1} \cdot (1 − f_\text{1st})$. In the last part of this thesis (chapter 8), the time-resolved spectroelectrochemistry was extended to systems beyond photostable carbon nanotube films. The integration of a flowelectrolysis cell into the transient absorption spectrometer allows the investigation of in-situ electrochemically generated but photounstable molecules due to a continuous exchange of sample volume. First time-resolved experiments were successfully performed using the dye methylene blue and its electrochemically reduced form leucomethylene blue. N2 - Die Dotierung von Halbleitern spielt eine entscheidende Rolle für die Funktionsweise von halbleiterbasierten (opto-)elektronischen Bauteilen. Deshalb erfordert die technische Nutzbarmachung von Halbleitern die Kontrolle und ein fundamentales Verständnis des Dotierungsprozesses. Für niederdimensionale Halbleiter, wie Kohlenstoffnanoröhren, ist momentan weder die Dichte noch die Verteilung von Ladungsträgern genau bekannt. In dieser Arbeit wurde die Dotierung von halbleitenden Kohlenstoffnanoröhren mittels spektroskopischer Methoden untersucht. Proben hochreiner, intrinsischer und einwandiger (6,5)Kohlenstoffnanoröhren wurden durch Polymerstabilisierung hergestellt. In Kapitel 4 wurde gezeigt, dass sowohl die elektro-, als auch die redoxchemische $p$-Dotierung zu einem identischen Bleichen, einer Blauverschiebung, Verbreiterung und Asymmetrie der Absorptionsbande des S$_1$ Exzitons führt. Die ähnlichen spektralen Änderungen, die durch beide Dotierungsverfahren induziert wurden, legen den Schluss nahe, dass optische Spektren nicht zur Identifikation des Dotierungsverfahrens genutzt werden können. Möglicherweise wichtiger ist die Schlussfolgerung, dass die Ladungsverteilung und der Charakter der Ladungen nicht davon abhängt mittels welcher Methode die Dotierung erreicht wurde. Die detaillierte Analyse der durch Dotierung hervorgerufenen spektralen Änderungen in Kapitel 5 deutet eine inhomogene Verteilung der Überschussladungen an. Die Hypothese der Ladungsträgerlokalisierung ist konsistent mit der hohen Sensitivität der Photolumineszenz des S$_1$-Exzitons auf zusätzliche Ladungen und mit dem gestreckt-exponentiellen Zerfall der Exzitonenpopulation nach ultrakurzer Anregung. Beide Aspekte sind in guter Übereinstimmung mit dem diffusionslimitierten Kontaktlöschen von Exzitonen an lokalisierten Ladungen. Weiterhin wirken lokalisierte Ladungen – ähnlich zu strukturellen Defekten – als Störungen der Bandstruktur. Dies wurde durch den dotierungsbedingten Anstieg der D-Bandenantiresonanz im mittleren Infrarot nachgewiesen. Quantenmechanische Modellrechnungen deuten weiterhin darauf hin, dass Gegenionen eine entscheidende Rolle bei der Ladungsträgerlokalisierung spielen. Die Adsorption von Gegenionen an der Nanorohroberfläche induziert Fallenzustände für Ladungen, die mehr als 100 meV tief sind. Weiterhin ergibt sich eine Lokalisierungslänge der Ladungsträger von ungefähr 3 - 4 nm. Das dotierungsbedingte Bleichen der Interbandabsorption wird begleitet von einem Anstieg der Absorption im IR-Bereich unterhalb von 600 meV. Die beobachtete Verschiebung der IR-Peakposition deutet einen kontinuierlichen Übergang von lokalisierten zu delokalisierten Ladungsträgern an. Dieser Übergang wird durch den steigenden Überlapp der Ladungsträgerwellenfunktionen bei höheren Ladungsdichten verursacht und wurde durch klassische Monte-Carlo-Simulationen der Intrabandabsorption modelliert. In Kapitel 6 wurde die Spektroskopie stark dotierter (entartet dotierter) Nanoröhren diskutiert. Dieses zeichnen sich durch eine Drude-Antwort der Intrabandabsorption freier Ladungsträger im Spektrum der optischen Leitfähigkeit aus. Im NIR-Spektralbereich wird die Absorption des S$_1$-Exzitons und des X$^+_1$ -Trions durch ein beinahe 1 eV breites und konstantes Absorptionssignal, die sogenannte H-Bande, ersetzt. Die linearen und transienten Absorptionsspektren stark dotierter Nanoröhren legt den Schluss nahe, dass die H-Bande Interbandübergängen freier Ladungsträger zugeordnet werden kann. Kapitel 7 beschäftigte sich mit der Quantifizierung von Ladungsträgerdichten mittels linearer Absorptionsspektroskopie. Ein besonders gutes Maß für die Ladungsträgerdichte ist das Bleichen des S$_1$ Exzitons. Für ein Bleichen unterhalb von ungefähr 50% ist die Ladungsträgerdichte proportional zum Bleichen. Bei höherer Dotierung wurden Abweichungen vom linearen Verhalten beobachtet. Für Dotierungen jenseits einer vollständig gebleichten S$_1$-Bande wird zur Quantifizierung der Ladungsträgerdichte die Bestimmung der normierten Oszillatorstärke über den gesamten ersten Subbandbereich (Trion, Exziton, freie e-h-Paare) empfohlen. Basierend auf der Zustandsdichte der Nanoröhren kann die Ladungsträgerdichte $n$ mittels $n = 0.74\,\text{nm}^{−1} \cdot (1 − f_\text{1st})$ abgeschätzt werden. Im letzten Teil dieser Arbeit (Kapitel 8) wurde die zeitaufgelöste Spektroelektrochemie auf Systeme jenseits photostabiler Kohlenstoffnanoröhren ausgeweitet. Der Einbau einer Flusselektrolysezelle in das transiente Absorptionsspektrometer erlaubt die Untersuchung von elektrochemisch in-situ hergestellten aber photoinstabilen Molekülen durch einen kontinuierlichen Austausch des Probenvolumens. Die ersten zeitaufgelösten Experimente wurden erfolgreich anhand des Farbstoffs Methylenblau und dessen reduzierter Form Leukomethylenblau durchgeführt. KW - Dotierung KW - Einwandige Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Lokalisation KW - Ladungsträger KW - Ladungsträgerlokalisation KW - zeitaufgelöste Spektroskopie KW - charge carrier localization KW - time-resolved spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188975 ER -