TY - THES A1 - Abdelmohsen, Usama Ramadan T1 - Antimicrobial Activities from Plant Cell Cultures and Marine Sponge-Associated Actinomycetes T1 - Antimikrobielle Aktivitäten aus Pflanzenzellkulturen und marinen Schwamm-assoziierten Actinomyceten N2 - This thesis is divided into three parts with the main goal allocating novel antimicrobial compounds that could be used as future antibiotics. The first part aimed to evaluate the potential of plant suspension cultures for the production of antimicrobial proteins. The extracellular, intracellular and cell wall bound fractions of seven heterotrophic and photomixotrophic plant cell suspension cultures treated with nine different elicitors were tested for the elicitor dependent production of antimicrobial proteins. Bioactivities were tested against a selected panel of human isolates including Gram-positive and Gram-negative bacteria as well as fungi using the disc diffusion assay. The intracellular fractions of elicited cell cultures were more active than extracellular fractions while the cell wall bound fractions showed lowest activities. Among the 21 fractions tested, the intracellular fraction of Lavendula angustifolia elicited with DC3000 was most active against Candida maltosa. The second most active fraction was the intracellular fraction of Arabidopsis thaliana elicited with salicylic acid which was moreover active against all test strains. The antimicrobial activity of elicited Arabidopsis thaliana cell cultures was tested by bioautography to locate the antimicrobial proteins in the crude extract. The intracellular fraction of photomixotrophic Arabidopsis thaliana cells elicited with salicylic acid was selected for further gel filtration chromatography on S-200 column leading to the purification of one 19 kDa antimicrobially active protein, designated, AtAMP. Our findings suggest that elicited plant cell cultures may present a new promising alternative source of antimicrobial proteins. The second part comprises the isolation of actinomycetes associated with marine sponges and testing the bioactivities of new species for further investigations. Actinobacterial communities of eleven taxonomically different sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia) were investigated by a culture-based approach using different standard media for isolation of actinomycetes and media enriched with aqueous sponge extract to target rare and new actinomycete species. Phylogenetic characterization of 52 representative isolates out of 90 based on almost complete sequences of genes encoding 16S rRNA supported their assignment to 18 different actinomycete genera. Altogether 14 putatively new species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. The use of M1 agar amended with aqueous sponge extract yielded a putative new genus related to Rubrobacter which highlighting the need for innovative cultivation protocols. Biological activity testing showed that five isolates were active against Gram-positives only, one isolate was active against Candida albicans only and one isolate showed activity against both groups of pathogens. Moreover, the antiparasistic activity was documented for four isolates. These results showed a high diversity of actinomycetes associated with marine sponges as well as highlighted their potential to produce anti-infective agents. The third part of the thesis focused on the isolation and structure elucidation of new bioactive compounds. Streptomyces strain RV15 recovered from sponge Dysidea tupha, was selected for further chemical analysis by virtue of the fact that it exhibited the greatest antimicrobial potential against Staphylococcus aureus as well as Candida albicans among the all tested strains. Moreover, members of the genus Streptomyces are well known as prolific producers of interesting pharmacologically active metabolites. Chemical analysis of the methanolic crude extract using different chromatographic tools yielded four new compounds. The structures of the new compounds were spectroscopically elucidated to be four new cyclic peptides, namely, cyclodysidins A-D. Their bioactivity was tested against different proteases, bacteria and Candida as well as tumor cell lines. The compounds did not show any significant activities at this point. N2 - Die hier vorliegende Dissertation ist in drei Kapitel gegliedert und hatte die Bereitstellung neuer antimikrobieller Substanzen, die zukünftig als Antibiotika genutzt werden könnten, zum Hauptziel. Das erste Kapitel befasst sich mit dem Potenzial von Pflanzen zur Produktion von Proteinen mit antimikrobieller Wirkung. Pflanzenzellkulturen wurden mit neun verschiedenen Induktoren stimuliert und anschließend auf die Produktion von Proteinen mit antimikrobieller Wirkung hin untersucht. Dafür wurden die extra-, intrazellulären sowie die membrangebundenen Proteinfraktionen von sieben heterotrophen und photomixotrophen Pflanzenzellkulturen extrahiert. Mittels Diffusionstests wurden die Wirkung der Proteine gegen eine Sammlung menschlicher Pathogene inklusive Gram-positiver und Gram-negativer Bakterien, sowie Pilze getestet. Die intrazellulären Fraktionen zeigten dabei höhere Aktivitäten als die extrazellulären, wohingegen die membrangebundenen Proteine die geringsten Aktivitäten aufwiesen. Von den insgesamt 21 getesteten Proteinfraktionen wies die mit DC3000 induzierte intrazelluläre Fraktion von Lavendula angustifolia die größte Wirkung gegen Candida maltosa auf. Die mit Salicylsäure induzierte intrazelluläre Proteinfraktion von Arabidopsis thaliana zeigte eine Hemmung aller getesteten pathogenen Stämme. Die antimikrobielle Aktivität der induzierten Arabidopsis thaliana-Zellkultur wurde mittels Bioautography weiter untersucht, um das wirksame Protein im Gesamt-(Roh-) extrakt einzugrenzen. Die intrazelluläre Fraktion der photomixotrophen Arabidopsis thaliana-Zellkultur wurde ausgewählt, um ein 19 kDa Protein mit antimikrobieller Wirkung, genannt AtAMP, mittels Gelfitrationschromatography über eine S-200 Säule aufzureinigen. Unsere Ergebnisse weisen darauf hin, dass induzierte Pflanzenzellkulturen zukünftig als aussichtsreiche alternative Quelle für antimikrobiell wirksame Proteine herangezogen werden können. Der zweite Teil dieser Dissertation beinhaltet die Isolation von mit marinen Schwämmen assoziierten Actinomyceten und deren Testung auf Bioaktivität. Aus 11 taxonomisch verschiedenen, an den Küsten von Ras Mohamed (Ägypten) und Rovinj (Kroatien) gesammelten Schwammspezies, wurden Actinobakterien auf verschiedenen Standardmedien kultiviert. Um seltene, neue Stämme zu isolieren, wurden diese Medien mit wässrigen Schwammextrakten angereichert. Die auf der 16S rRNA-Gensequenz basierenden phylogenetischen Charakterisierung von 52 der insgesamt 90 Isolate, zeigte die Zugehörigkeit zu 18 verschiedenen Actinomyceten-Gattungen. Die 16S rRNA-Gene von 14 Isolaten zeigten Homologien von weniger als 98,2% zu denen anderer in Datenbanken abgelegten Bakterien und stellen somit vermutlich neue Arten dar. Die Verwendung von mit Schwammextrakt angereichertem M1-Agar resultierte in der Kultivierung einer mutmaßlich neuen, mit Rubrobacter verwandten Gattung und bestätigt die Notwendigkeit der Entwicklung neuer innovativer Kultivierungsprotokolle. Aktivitätstests von fünf Isolaten zeigten deren hemmende Wirkung nur gegen Gram-positive Bakterien, ein Isolat zeigte Aktivität nur gegen Candida albicans und ein Isolat war wirksam gegen beide genannten Pathogengruppen. Desweiteren konnten antiparasitäre Wirkungen von vier Isolaten dokumentiert werden. Die hier beschriebenen Ergebnisse zeigen die große Diversität von mit Schwämmen assoziierten Actinomyceten und deren Potential Antiinfektiva zu produzieren. Der dritte Teil dieser Arbeit fokussierte sich auf die Isolation und Strukturaufklärung neuer bioaktiver Substanzen. Streptomyceten sind bekannt für die Produktion von interessanten, pharmakologisch aktiven Metaboliten. Der aus dem Schwamm Dysidea tupha isolierte Stamm Streptomyces RV 15 zeigte eine hohe Aktivität gegen Staphylococcus aureus und C. albicans und wurde deshalb für nähere Untersuchungen ausgewählt. Die chemische Analyse des Methanol-Rohextrakts unter der Verwendung verschiedener Chromatographie-Verfahren resultierte in der Isolation von vier Substanzen. Die spektroskopische Analyse zeigte, dass diese neuen Substanzen zyklische Peptidstrukturen aufweisen und wurden daraufhin als Cyclodysidin A-D benannt. Die Bioaktivitäten dieser Substanzen wurden gegen verschiedene Proteasen, Bakterien und Candida sowie gegen verschiedene Tumorzelllinien getestet. Bis zum jetzigen Zeitpunkt zeigte keine der getesteten Peptide eine aussagekräftige Wirkung. KW - Antimikrobieller Wirkstoff KW - Pflanzenzelle KW - Zellkultur KW - Antimikrobielle Aktivitäten KW - Pflanzenzellkulturen KW - Proteinen mit antimikrobieller Wirkung KW - Actinomyceten KW - zyklische Peptide KW - Antimicrobial activities KW - Plant cell cultures KW - Antimicrobial proteins KW - Actinomycetes KW - Cyclic peptides Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51483 ER - TY - THES A1 - Glöckner, Herma T1 - Characterization of a new miniaturized hollow-fiber bioreactor for cultivation of cell lines and primary cells to improve cytostatic drug testing in vitro T1 - Charakterisierung eines neuartigen Hohlfaserbioreaktors zur Kultur von Zellinien und Primärzellen im Hinblick auf eine verbesserte Zytostatikatestung in vitro N2 - Monolayer or suspension cell cultures are of only limited value as experimental models for human cancer. Therefore, more sophisticated, three-dimensional culture systems like spheroid cultures or histocultures are used, which more closely mimic the tumor in individual patients compared to monolayer or suspension cultures. As tissue culture or tissue engineering requires more sophisticated culture, specialized in vitro techniques may also improve experimental tumor models. In the present work, a new miniaturized hollow-fiber bioreactor system for mammalian cell culture in small volumes (up to 3 ml) is characterized with regard to transport characteristics and growth of leukemic cell lines (chapter 2). Cell and medium compartment are separated by dialysis membranes and oxygenation is accomplished using oxygenation membranes. Due to a transparent housing, cells can be observed by microscopy during culture. The leukemic cell lines CCRF-CEM, HL-60 and REH were cultivated up to densities of 3.5 x 107/ml without medium change or manipulation of the cells. Growth and viability of the cells in the bioreactor were the same or better, and the viable cell count was always higher compared to culture in Transwellâ plates. As shown using CCRF-CEM cells, growth in the bioreactor was strongly influenced and could be controlled by the medium flow rate. As a consequence, consumption of glucose and generation of lactate varied with the flow rate. Influx of low molecular weight substances in the cell compartment could be regulated by variation of the concentration in the medium compartment. Thus, time dependent concentration profiles (e.g. pharmacokinetic profiles of drugs) can be realized as illustrated using glucose as a model compound. Depending on the molecular size cut-off of the membranes used, added growth factors like GM-CSF and IL-3 as well as factors secreted from the cells are retained in the cell compartment for up to one week. Second, a method for monitoring cell proliferation the hollow-fiber bioreactor by use of the Alamar BlueTM dye was developed (chapter 3). Alamar BlueTM is a non-fluorescent compound which yields a fluorescent product after reduction e.g. by living cells. In contrast to the MTT-assay, the Alamar BlueTM-assay does not lead to cell death. However, when not removed from the cells, the Alamar BlueTM dye shows a reversible, time- and concentration-dependent growth inhibition as observed for leukemic cell lines. When applied in the medium compartment of a hollow-fiber bioreactor system, the dye is delivered to the cells across the hollow-fiber membrane, reduced by the cells and released from the cell into the medium compartment back again. Thus, fluorescence intensity can be measured in medium samples reflecting growth of the cells in the cell compartment. This procedure offers several advantages. First, exposure of the cells to the dye can be reduced compared to conventional culture in plates. Second, handling steps are minimized since no sample of the cells needs to be taken for readout. Moreover, for the exchange of medium, a centrifugation step can be avoided and the cells can be cultivated further. Third, the method allows to discriminate between cell densities of 105, 106 and 107 of proliferating HL-60 cells cultivated in the cell compartment of the bioreactor. Measurement of fluorescence in the medium compartment is more sensitive compared to glucose or lactate measurement for cell counts below 106 cells/ml, in particular. In conclusion, the Alamar BlueTM-assay combined with the hollow-fiber bioreactor offers distinct advantages for the non-invasive monitoring of cell viability and proliferation in a closed system. In chapter 4 the use of the hollow-fiber bioreactor as a tool for toxicity testing was investigated, as current models for toxicity as well as efficacy testing of drugs in vitro allow only limited conclusions with regard to the in vivo situation. Examples of the drawbacks of current test systems are the lack of realistic in vitro tumor models and difficulties to model drug pharmacokinetics. The bioreactor proved to be pyrogen free and is steam-sterilizable. Leukemic cell lines like HL-60 and primary cells such as PHA-stimulated lymphocytes can be grown up to high densities of 1-3 x 107 and analyzed during growth in the bioreactor by light-microscopy. The cytostatic drug Ara-C shows a dose-dependent growth inhibition of HL-60 cells and a dose-response curve similar to controls in culture plates. The bioreactor system is highly flexible since several systems can be run in parallel, soluble drugs can be delivered continuously via a perfusion membrane and gaseous compounds via an oxygenation membrane which also allows to control pO2 and pH (via pCO2) during culture in the cell compartment. The modular concept of the bioreactor system allows realization of a variety of different design properties, which may lead to an improved in vitro system for toxicity testing by more closely resembling the in vivo situation. Whereas several distinct advantages of the new system have been demonstrated, more work has to be done to promote in vitro systems in toxicity testing and drug development further and to reduce the need for animal tests. N2 - Konventionelle Zellkulturmethoden, wie Monolayer- oder Suspensionskulturen weisen im Vergleich zu dreidimensionalen Kultursystemen (z.B. Sphäroid- oder Gewebekultur) wesentliche Limitationen auf. So sind in vitro Systeme als Modelle für humane Tumore häufig ungeeignet, besonders im Hinblick auf die Wirkstofftestung von Zytostatika. Dreidimensionale Kulturmodelle, die dem Verhalten von Tumoren in vivo besser entsprechen, erfordern technisch ausgereiftere Kulturtechniken als die konventionelle Zellkultur. Diese könnten dazu beitragen, eine dreidimensionale Kultur von Gewebe und dadurch in vivo ähnliche Bedingungen zu realisieren. In der vorliegenden Arbeit wurde ein neuentwickelter, miniaturisierter Hohlfaserbioreakor hinsichtlich seiner Transportcharakteristik, sowie bezüglich des Wachstums von leukämischen Zellinien untersucht (Kapitel 2). Der Zellkulturraum, mit einem Volumen von bis zu 3 ml, ist durch Dialysemembranen vom Mediumkompartiment getrennt. Eine zusätzliche Oxygenierung der Zellkultur erfolgt über Oxygenationsmembranen. Aufgrund der Verwendung eines transparenten Gehäuses können die Zellen während der Kultur mikroskopisch beobachtet werden. Die leukämischen Zellinien CCRF-CEM, HL-60 und REH konnten in dem neuen Hohlfaserbioreaktor in Zelldichten bis 3.5 x 107/ml kultiviert werden, ohne daß ein Mediumwechsel oder eine andere Manipulation der Zellkultur notwendig war. Das Wachstum und die Vitalität der Zellkulturen war vergleichbar oder besser als von Kontrollen in Transwellâ Kulturen. Wie für die Zellinie CCRF-CEM gezeigt werden konnte, war das Wachstum der Zellen abhängig von der Mediumflußrate und konnte durch deren Variation kontrolliert werden. Daraus resultierte auch ein veränderter Glukoseverbrauch und eine veränderte Laktatproduktion der Zellen. Der Eintrag von niedermolekularen Substanzen in den Zellkulturraum konnte durch die Variation der Konzentration der Substanz im Mediumkompartiment reguliert werden. Auf diese Weise können zeitabhängige Konzentrationsprofile, z. B. pharmakokinetische Profile von Wirkstoffen, realisiert werden, wie mit der Modellsubstanz Glukose gezeigt wurde. Abhängig vom molekularen Cut-off der verwendeten Membranen, werden im Zellkulturraum sowohl zugegebene, als auch autokrine Faktoren für bis zu einer Woche zurückgehalten, wie für GM-CSF oder IL-3 gezeigt wurde. Weiterhin wurde eine Methode entwickelt, um in dem miniaturisierten Hohlfaserbioreaktor die Zellproliferation mittels des Farbstoffes Alamar BlueTM zu ermitteln (Kapitel 3). Alamar BlueTM ist ein nicht-fluoreszierender Farbstoff, der nach Reduktion durch z.B. lebende Zellen in ein fluoreszierendes Produkt umgewandelt wird. Im Gegensatz zum MTT-Assay, führt der Alamar BlueTM-Assay jedoch nicht zum Zelltod. Wird der Farbstoff nicht aus der Zellkultur entfernt, zeigt sich eine reversible, zeit- und konzentrationsabhängige Wachstumsinhibiton der Zellen, wie für leukämische Zellinien gezeigt werden konnte. Verwendet man den Farbstoff im Mediumkompartiment eines Hohlfaserbioreaktor-System, wird er über die Hohlfasermembran zu den Zellen angeliefert, von den Zellen reduziert, und über die Membran wieder in das Mediumkompartiment abgeführt. Auf diese Weise reflektiert die Zunahme der Fluoreszenz im Mediumkompartiment das Wachstum der Zellen im Zellkulturraum. Das Verfahren bietet mehrere Vorteile: Erstens kann der Kontakt der Zellen mit dem Farbstoff im Vergleich zur konventionellen Zellkultur reduziert werden und das notwendige Handling wird minimiert, da keine Probennahme aus der Zellkultur zur Auswertung erforderlich ist. Zweitens ist zum Austauschen des Mediums kein Zentrifugationsschritt notwendig, so daß die Zellen ohne Störung weiterkultiviert werden können. Drittens erlaubt diese Methode eine Diskriminierung von Zelldichten von 105, 106 und 107 proliferierenden HL-60 Zellen im Zellkulturraum des Bioreaktors. Es konnte gezeigt werden, daß die Fluoreszenzmessung im Mediumkompartment im Vergleich zur Messung von Glukose oder Laktat besonders für Zellzahlen unterhalb 106 Zellen/ml sensitiver ist. Zusammenfassend bietet der Alamar BlueTM-Assay in Verbindung mit dem Hohlfaserbioreaktor klare Vorteile für ein nicht-invasives Monitoring der Zellvitalität und Proliferation in einem geschlossenen System. In Kapitel 4 wird die Verwendung des miniturisierten Hohlfaserbioreaktors als Modellsystem für toxikologische Untersuchungen beschrieben. Gegenwärtig fehlen realisitische in vitro Modelle, vor allem zur Modellierung von pharmakokinetischen Profilen. Der Bioreaktor erwies sich als pyrogenfrei und dampfsterilisierbar. Leukämische Zellinien, z. B. HL-60 Zellen sowie Primärzellen, wie z. B. PHA-stimulierte Lymphozyten konnten in Zelldichten bis zu 1-3 x 107 Zellen/ml kultiviert werden. Das Zytostatikum Ara-C wies eine dosisabhängige Wachstumsinhibition im Hohlfaserbioreaktor auf, wie für HL-60 Zellen gezeigt wurde. Die Dosis-Wirkungs-Kurve war vergleichbar dem Ergebnis in 96-Well-Platten. Das Bioreaktor System bietet eine hohe Flexibilität, da mehrere Systeme parallel untersucht werden können. Lösliche Substanzen können kontinuierlich über die Perfusionsmembran angeliefert werden und gasförmige Komponenten über die Oxygenationsmembran. Diese ermöglicht zudem eine Kontrolle des pO2 und des pH-Wertes (via pCO2) im Zellkompartiment während der Kultur. Das modulare Konzept des Bioreaktor Systems ermöglicht die Realisierung unterschiedlicher Designs. Obgleich einige deutliche Vorteile des neuen Bioreaktorsystems gezeigt wurden, müssen weitere Untersuchungen durchgeführt werden, um den Einsatz von in vitro Systemen in der Entwicklung neuer Wirkstoffe voranzutreiben und die Notwendigkeit von Tierexperimenten zu verringern. KW - Hohlfaserreaktor KW - Zellkultur KW - Cytostatikum KW - Hohlfaserbioreaktor KW - Zytostatikatestung KW - in vitro KW - hollow-fiber bioreactor KW - cytostatic drug testing KW - in vitro Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181317 ER - TY - THES A1 - Ramachandran, Sarada Devi T1 - Development Of Three-Dimensional Liver Models For Drug Development And Therapeutical Applications T1 - Entwicklung eines dreidimensionalen Lebermodels für Wirkstoffentwicklung und therapeutische Anwendungen N2 - Primary human liver cells such as hepatocytes when isolated and cultured in 2D monolayers, de-differentiate and lose their phenotypic characteristics. In order to maintain the typical polygonal shape of the hepatocytes and their polarization with respect to the neighbouring cells and extra cellular matrix (ECM), it is essential to culture the cells in a three-dimensional (3D) environment. There are numerous culturing techniques available to retain the 3D organization including culturing hepatocytes between two layers of collagen and/or MatrigelTM (Moghe et al. 1997) or in 3D scaffolds (Burkard et al. 2012). In this thesis, three different 3D hepatic models were investigated. 1. To reflect the in vivo situation, the hepatocytes were cultured in 3D synthetic scaffolds called Mimetix®. These were generated using an electrospinning technique using biodegradable polymers. The scaffolds were modified to increase the pore size to achieve an optimal cell function and penetration into the scaffolds, which is needed for good cell-cell contact and to retain long-term phenotypic functions. Different fibre diameters, and scaffold thicknesses were analyzed using upcyte® hepatocytes. The performance of upcyte® hepatocytes in 3D scaffolds was determined by measuring metabolic functions such as cytochrome P450 3A4 (CYP3A4) and MTS metabolism. 2. Apart from maintaining the hepatocytes in 3D orientation, co-culturing the hepatocytes with other non-parenchymal cell types, such as liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs), better reflects the complexity of the liver. Three different upcyte® cell types namely, hepatocytes, LSECs and MSCs, were used to generated 3D liver organoids. The liver organoids were generated and cultured in static and dynamic conditions. Dynamic conditions using Quasi-vivo® chambers were used to reflect the in vivo blood flow. After culturing the cells for 10 days, the structural orientation of cells within the organoids was analyzed. Functional integrity was investigated by measuring CYP3A4 activities. The organoids were further characterized using in situ hybridization for the expression of functional genes, albumin and enzymes regulating glutamine and glucose levels. 3. An ex vivo bioreactor employing a decellularized organic scaffold called a “Biological Vascularized Scaffold” (BioVaSc) was established. Jejunum of the small intestine from pigs was chemically decellularized by retaining the vascular system. The vascular tree of the BioVaSc was repopulated with upcyte® microvascular endothelial cells (mvECs). The lumen of the BioVaSc was then used to culture the liver organoids generated using upcyte® hepatocytes, LSECs and MSCs. The structural organisation of the cells within the organoids was visualized using cell-specific immunohistochemical stainings. The performance of liver organoids in the BioVaSc was determined according to metabolic functions (CYP3A4 activities). This thesis also addresses how in vitro models can be optimized and then applied to drug development and therapy. A comprehensive evaluation was conducted to investigate the application of second-generation upcyte® hepatocytes from 4 donors for inhibition and induction assays, using a selection of reference inhibitors and inducers, under optimized culture conditions. CYP1A2, CYP2B6, CYP2C9 and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9 and CYP3A4 inducers, confirming that they have functional AhR, CAR and PXR mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or non-inducers of CYP3A4 and CYP2B6 were tested. Three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2 and Cmax,u/Ind50 were analyzed. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were also demonstrated. Haemophilia A occurs due to lack of functional Factor VIII (FVIII) protein in the blood. Different types of cells from hepatic and extrahepatic origin produce FVIII. Supernatants harvested from primary LSECs were evaluated for the presence of secreted functional FVIII. In order to increase the FVIII production, different upcyte® endothelial cells such as blood outgrowth endothelial cells (BOECs), LSECs and mvECs were transduced with lentiviral particles carrying a FVIII transgene. Also, to reflect a more native situation, primary mvECs were selected and modified by transducing them with FVIII lentivirus and investigated as a potential method for generating this coagulation factor. N2 - Primäre humane Leberzellen wie beispielsweise Hepatozyten de-differenzieren und verlieren ihre phänotypischen Eigenschaften, wenn man sie isoliert und in 2D Monoschicht kultiviert. Um die typische, polygonale Form der Hepatozyten und ihre Polarisation gegenüber den benachbarten Zellen und der extrazellulären Matrix (EZM) zu erhalten, ist es essentiell die Zellen in einer dreidimensionalen (3D) Umgebung zu kultivieren. Es sind zahlreiche Techniken verfügbar, um die 3D-Organisation zu erhalten wie beispielsweise die Kultur von Hepatozyten zwischen zwei Schichten von Kollagen und/oder MatrigelTM (Moghe et al. 1997) oder in einem 3D Gerüst (Burkard et al. 2012). In dieser Arbeit wurden 3 verschiedene, hepatische 3D Modelle untersucht. 1. Um die in vivo Situation widerzuspiegeln, wurden die Hepatozyten in einer synthetischen 3D Matrix namens Mimetix® kultiviert. Diese wurde aus biologisch abbaubaren Polymeren elektrogesponnen. Die Matrix wurde modifiziert indem die Poren vergrößert wurden, um eine optimale Besiedlung des Zellgerüsts und dadurch eine gesteigerte Zellfunktionalität zu erreichen. Dies wird sowohl für die Ausbildung von Zell-Zell-Kontakten wie auch für den Erhalt der phänotypischen Funktionen über einen längeren Zeitraum hin benötigt. Unterschiedliche Faserdurchmesser und Matrixschichtdicken wurden mittels upcyte® Hepatozyten analysiert. Die Leistungsfähigkeit der upcyte® Hepatozyten wurde durch die Messung metabolischer Funktionen bestimmt, wie beispielsweise Cytochrom P450 3A4 (CYP3A4) und MTS Metabolismus. 2. Abgesehen vom Erhalt der 3D Orientierung der Hepatozyten, hilft eine Ko-Kultur der Hepatozyten mit anderen nicht-parenchymalen Zelltypen wie beispielsweise leber-sinusoidalen Endothelzellen (LSECs) und mesenchymalen Stammzellen (MSCs) die Komplexität der Leber darzustellen. Drei unterschiedliche upcyte® Zelltypen, das heißt Hepatozyten, LSECs und MSCs wurden eingesetzt, um 3D Leberorganoide zu generieren. Die Leberorganoide wurden in statischen Zellkulturbedingungen generiert und dynamischen Bedingungen kultiviert. Durch den Quasi-vivo Bioreaktor als dynamisches Zellkultursystem wurde der Blutstrom in vivo widergespiegelt. Nach einer Kulturdauer von 10 Tagen wurde die strukturelle Organisation der Zellen innerhalb der Organoide analysiert. Die Funktionalität wurde durch Messungen der CYP3A4 Enzymaktivitäten untersucht. Darüber hinaus wurden die Organoide mittels in situ Hybridisierung auf die Expression von funktionalen Genen, Albumin sowie Glutamin- und Glukose-regulierende Enzyme hin analysiert. 3. Es wurde ein ex vivo Bioreaktor etabliert, dessen Grundlage ein dezellularisiertes Zellgerüst namens ‚Biological Vascularized Scaffold‘ (BioVaSc) bildet. Hierfür wurde das Jejunum vom Dünndarm des Hausschweins chemisch dezellularisiert, wobei gleichzeitig das vaskuläre System erhalten wurde. Dieses Gefäßsystem wurde dann mit upcyte® humanen dermalen mikrovaskulären Endothelzellen (HDMECs) besiedelt. Das Lumen der BioVaSc wurde anschließend benutzt, um darin die Leberorganoide, die aus den upcyte® Hepatozyten, LSECs und MSCs generiert wurden, zu kultivieren. Die strukturelle Organisation der Zellen innerhalb der Organoide wurde mittels zell-spezifischer, immunhistochemischer Färbungen visualisiert. Die Funktionalität der Leberorganoide in der BioVaSc wurde anhand von metabolischer Aktivität (CYP3A4 Enzymaktivität) bestimmt. Diese Arbeit beschäftigt sich auch mit der Fragestellung, wie in vitro Modelle optimiert werden können, um sie schlussendlich für die Wirkstoffentwicklung aber auch zelltherapeutische Anwendungen einsetzen zu können. Eine umfassende Untersuchung wurde durchgeführt, um zu untersuchen inwiefern 4 Donoren der zweiten upcyte® Hepatozyten Generation für Inhibitions- und Induktionsstudien geeignet sind. Hierfür wurde eine Auswahl an Referenzinhibitoren und – induktoren unter optimierten Kulturbedingungen eingesetzt. CYP1A2, CYP2B6, CYP2C9 und CYP3A4 konnten durch den Einsatz von Inhibitoren reproduzierbar, konzentrationsabhängig inhibiert werden und die berechneten IC50-Werte klassifizierte jede Substanz korrekt als potenten Inhibitor. Upcyte® Hepatozyten reagierten auf proto-typische CYP1A2-, CYP2B6-, CYP2C9- und CYP3A4-Induktoren, wodurch eine funktionale AhR-, CAR- und PXR-vermittelte Regulation der jeweiligen CYP Enzymaktivität bestätigt werden konnte. Eine Sammlung von 11 Induktoren, die für CYP2B6 sowie CYP3A4 als potent, moderat potent und nicht potent klassifiziert sind wurden analysiert. Drei unterschiedliche Vorhersage-Modelle für die Induktion von CYP3A4 wurden analysiert, der (I) ‚Relative Induction Score (RIS), (II) AUCu/F2 und (III) Cmax,u. Darüber hinaus wurden PXR-selektive (Rifampicin) und CAR-selektive (Carbamazepin und Phenytoin) Induktoren für eine CYP3A4- und CYP2B6-Induktion gezeigt. Hämophilie A tritt aufgrund eines Mangels an funktionalem Faktor VIII protein (FVIII) im Blut auf. Verschiedene Zelltypen hepatischen und extra-hepatischen Ursprungs produzieren FVIII. Zellkulturüberstände von primären LSECs wurden abgenommen und hinsichtlich des Vorhandenseins von sekretiertem FVIII untersucht. Um die FVIII-Produktion zu steigern, wurden unterschiedliche upcyte® Endothelzellen, wie beispielsweise ‚blood outgrowth endothelial cells‘ (BOECs), LSECs und HDMECs, mit lentiviralen Partikeln, die ein FVIII Transgen tragen transduziert. Um eine nativere Situation widerzuspiegeln, wurden primäre HDMECs ausgewählt, um sie mittels Transduktion von FVIII lentiviralen Partikeln zu modifizieren, zu selektionieren und im Anschluss hinsichtlich ihres Potentials zur Bildung des Koagulationsfaktors FVIII zu untersuchen. KW - 3-D liver model KW - drug development KW - Therapeutical application KW - Leberepithelzelle KW - Dimension 3 KW - Zellkultur Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113155 ER - TY - THES A1 - Li, Jie T1 - Differential effects of neuromelanin and synthetic dopamine melanin on cell lines T1 - xxx N2 - xxx N2 - Neuromelanin (NM) is a complex polymer pigment found in catecholaminergic neurons of the human substantia nigra and locus ceruleus. The structure of this molecule is poorly characterised, and the physiological function of it in the brain is unknown. In vitro data, based upon synthetic dopamine melanins (DAM), suggest that these pigments may exhibit radical scavenging properties, but in the presence of iron, DAM acts as a proxidant. These data suggested that NM may be associated with the especial vulnerability of pigmented dopaminergic cells in Parkinson´s disease (PD), a disorder in which nigral iron levels are increased and the relatively specific loss of the pigmented neurons of the substantia nigra. Given the rarity of NM, and the difficulty of isolating this material from the human brain, all functional studies of NM published to date have utilised a synthetic dopamine melanin in place of the native pigment. In the current work we investigated the effects of NM from the healthy human brain and synthetic DAM on cell health and oxidative status in human-derived cell lines. Methods SK-N-SH, a human neuroblastoma cell line, and U 373, a human glioblastoma cell line was chosen to represent human neuronal and glial cell types. NM was isolated from the SN of adult human subjects from Australia and Germany with no history of neurological or neurodegenerative diseases. Synthetic DAM was prepared by autooxidation of dopamine. DAM and NM samples were added to the cultures with fresh media to final concentrations of 0.05 or 0.1 mg/ml. In some experiments cells were incubated with Fenton reagent (400µM FeSO4 plus 200µM H2O2) in the presence or absence of melanin or the iron chelator desferoxamine mesylate (100µM). The cells were incubated at 37 °C at 5% CO2 for varying periods of time as described. Lactate dehydrogenase (LDH) activity and Lipid peroxidation were measured. Hydroxyl radical production in the cultures was estimated used a modification of the salicylic acid spin-trapping method. All experiments were performed three times in triplicate and analysed using regression analysis and one- or two-way Analysis of Variance followed by Bonferroni’s t test corrected for multiple comparisons as appropriate. Results Following 24 hr incubation, both the native NM and the synthetic DAM pigment could be seen as electron dense granules both within the cell bodies of the SK-N-SH and U373 cells. The melanin was incorporated into the cell via an invagination of the cell membrane. DAM but not NM significantly increased the LDH activity and lipid peroxidation as well as the hydroxyl radical production. Co-incubation of Fenton reagent with either DAM or NM resulted in additive effects, compared to the levels elicited by Fenton reagent and the melanins alone. When added the iron chelator desferoximine together with Fenton reagent attentuated lipid peroxidation and hydroxyl radical production to control levels. In contrast, lipid peroxidation and hydroxyl radical production in U373 cells exposed to NM or DAM did not differ to that measured in untreated cells. Discussion Human neuron-derived cell line is a useful approach to address the effects of NM on dopaminergic neuron function. This is the first work to use internalised NM isolated from the healthy human brain as a model of intraneuronal pigment in vitro. Cell line functional studies showing cellular changes induced by DAM but not NM demonstrated that DAM is relatively toxic to cells but not NM. DAM represents a poor functional model of NM in that it displays a marked toxicity unrepresentative of the effects of the native melanin. Both NM and DAM were unable to attentuate the toxic effects of the added oxidative stimulus, this probably due to the exceeding the chelating capacity of NM. Future studies should point to the characterization and role of NM under in vivo conditions. The development of strategies to protect the neuromelanin in dopaminergic neurons may have important therapeutic implications not only for PD. KW - Neuromelanin KW - Dopamine melanin KW - Zellkultur KW - neuromelanin KW - dopamine melanin KW - cell culture Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13588 ER - TY - THES A1 - Janzen, Dieter T1 - Functional analysis of ion channels and neuronal networks in 2D and 3D \(in\) \(vitro\) cell culture models T1 - Funktionelle Analyse von Ionenkanälen und neuronalen Netzwerken in 2D und 3D \(in\) \(vitro\) Zellkulturmodellen N2 - In the central nervous system, excitatory and inhibitory signal transduction processes are mediated by presynaptic release of neurotransmitters, which bind to postsynaptic receptors. Glycine receptors (GlyRs) and GABAA receptors (GABAARs) are ligand-gated ion channels that enable synaptic inhibition. One part of the present thesis elucidated the role of the GlyRα1 β8 β9 loop in receptor expression, localization, and function by means of amino acid substitutions at residue Q177. This residue is underlying a startle disease phenotype in the spontaneous mouse model shaky and affected homozygous animals are dying 4-6 weeks after birth. The residue is located in the β8 β9 loop and thus part of the signal transduction unit essential for proper ion channel function. Moreover, residue Q177 is involved in a hydrogen network important for ligand binding. We observed no difference in ion channel trafficking to the cellular membrane for GlyRα1Q177 variants. However, electrophysiological measurements demonstrated reduced glycine, taurine, and β alanine potency in comparison to the wildtype protein. Modeling revealed that some GlyRα1Q177 variants disrupt the hydrogen network around residue Q177. The largest alterations were observed for the Q177R variant, which displayed similar effects as the Q177K mutation present in shaky mice. Exchange with structurally related amino acids to the original glutamine preserved the hydrogen bond network. Our results underlined the importance of the GlyR β8 β9 loop for proper ion channel gating. GlyRs as well as GABAARs can be modulated by numerous allosteric substances. Recently, we focused on monoterpenes from plant extracts and showed positive allosteric modulation of GABAARs. Here, we focused on the effect of 11 sesquiterpenes and sesquiterpenoids (SQTs) on GABAARs. SQTs are compounds naturally occurring in plants. We tested SQTs of the volatile fractions of hop and chamomile, including their secondary metabolites generated during digestion. Using the patch-clamp technique on transfected cells and neurons, we were able to observe significant GABAAR modulation by some of the compounds analyzed. Furthermore, a possible binding mechanism of SQTs to the neurosteroid binding site of the GABAAR was revealed by modeling and docking studies. We successfully demonstrated GABAAR modulation by SQTs and their secondary metabolites. The second part of the thesis investigated three-dimensional (3D) in vitro cell culture models which are becoming more and more important in different part of natural sciences. The third dimension allows developing of complex models closer to the natural environment of cells, but also requires materials with mechanical and biological properties comparable to the native tissue of the encapsulated cells. This is especially challenging for 3D in vitro cultures of primary neurons and astrocytes as the brain is one of the softest tissues found in the body. Ultra-soft matrices that mimic the neuronal in vivo environment are difficult to handle. We have overcome these challenges using fiber scaffolds created by melt electrowriting to reinforce ultra-soft matrigel. Hence, the scaffolds enabled proper handling of the whole composites and thus structural and functional characterizations requiring movement of the composites to different experimental setups. Using these scaffold-matrigel composites, we successfully established methods necessary for the characterization of neuronal network formation. Before starting with neurons, a mouse fibroblast cell line was seeded in scaffold-matrigel composites and transfected with the GlyR. 3D cultured cells displayed high viability, could be immunocytochemically stained, and electrophysiologically analyzed. In a follow-up study, primary mouse cortical neurons in fiber-reinforced matrigel were grown for up to 21 days in vitro. Neurons displayed high viability, and quantification of neurite lengths and synapse density revealed a fully formed neuronal network already after 7 days in 3D culture. Calcium imaging and patch clamp experiments demonstrated spontaneous network activity, functional voltage-gated sodium channels as well as action potential firing. By combining ultra-soft hydrogels with fiber scaffolds, we successfully created a cell culture model suitable for future work in the context of cell-cell interactions between primary cells of the brain and tumor cells, which will help to elucidate the molecular pathology of aggressive brain tumors and possibly other disease mechanisms. N2 - Im zentralen Nervensystem wird die exzitatorische und inhibitorische Signaltransduktion durch die präsynaptische Ausschüttung von Neurotransmittern, die an postsynaptische Rezeptoren binden, gesteuert. Glycinrezeptoren (GlyRs) und GABAA-Rezeptoren (GABAARs) sind ligandengesteuerte Ionenkanäle, die die synaptische Inhibition ermöglichen. Ein Teil der vorliegenden Arbeit beschäftigt sich mit dem Einfluss des GlyRα1 β8 β9-Loops auf Expression, Lokalisation und Funktion des Rezeptors. Dazu wurde ein Aminosäureaustausch an Position Q177 durchgeführt, welche dem Startle-Krankheit-Phänotyp des spontanen Mausmodells shaky zugrunde liegt. Betroffene homozygote Tiere versterben 4-6 Wochen nach Geburt. Die Position befindet sich im β8 β9-Loop und ist damit Teil einer Signaltransduktionseinheit, die essenziell für die korrekte Rezeptorfunktion ist. Zudem ist Position Q177 teil eines Wasserstoffbrückennetzwerks, welches für die Ligandenbindung erforderlich ist. Wir konnten keinen Einfluss der GlyRα1Q177-Varianten auf den Transport des Rezeptors zur Zellmembran feststellen. Allerdings zeigten elektrophysiologische Messungen eine verringerte Wirksamkeit von Glycin, Taurin und β Alanin verglichen mit dem Wildtyp-Protein. Mithilfe von Proteinmodellierung konnte gezeigt werden, dass manche der GlyRα1Q177-Varianten das Wasserstoffbrückennetzwerk im Umfeld von Position Q177 stören. Die größten Effekte wurden bei der Q177R-Variante beobachtet, die sich ähnlich zur Q177K-Mutation der shaky-Maus verhielt. Der Austausch zu einer Aminosäure, die strukturell ähnlich zum ursprünglichen Glutamin ist, störte das Wasserstoffbrückennetzwerk hingegen nicht. Unsere Ergebnisse zeigen, wie wichtig der GlyR β8 β9-Loop für die Aufrechterhaltung der Rezeptorfunktion ist. Sowohl GlyRs als auch GABAARs können durch verschiedenste allosterische Substanzen moduliert werden. Zuletzt zeigten wir positive allosterische Modulation von GABAARs durch Monoteperne aus Pflanzenextrakten. Hier haben wir uns auf den Effekt von 11 Sesquiterpenen und Sesquiterpenoiden (SQTs) auf GABAARs fokussiert. SQTs sind natürlich in Pflanzen vorkommende Stoffe. Wir testeten SQTs aus dem flüchtigen Anteil von Hopfen und Kamille, sowie deren sekundäre Metaboliten, die während der Verdauung entstehen. Mithilfe der Patch-Clamp-Methode konnten wir in transfizierten Zellenlinien und neuronalen Primärzellen signifikante Modulation von GABAARs durch einige der SQTs beobachten. Außerdem wurde mithilfe von Docking-Simulationen eine mögliche Bindung von SQTs in der Neurosteroid-Bindungstasche gezeigt. Zusammengefasst haben wir erfolgreich die Modulation von GABAARs durch SQTs und deren sekundäre Metaboliten demonstriert. Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit dreidimensionalen (3D) in vitro Zellkulturmodellen, die zunehmend an Bedeutung gewinnen. Die dritte Dimension erlaubt die Entwicklungen von komplexen Modellen, die sich der natürlichen Umgebung von Zellen annähern. Dafür werden Materialien benötigt, deren mechanische und biologische Eigenschaften denen des ursprünglichen Gewebes der eingeschlossenen Zellen ähneln. Dies ist insbesondere eine Herausforderung bei 3D in vitro Kulturen von primären Neuronen und Astrozyten, da das Gehirn eines der weichsten Gewebe des Körpers ist. Ultraweiche Matrizen, welche die neuronale Umgebung nachahmen, sind schwer zu handhaben. Wir haben dieses Problem gelöst, indem wir ultraweiches Matrigel mit Fasergerüsten verstärkten, die mithilfe von Melt Electrowriting gedruckt wurden. Somit können diese Matrigel-Faser-Komposite für strukturelle und funktionelle Experimente benutzt werden, die häufige Bewegung und Transport der Proben voraussetzen. Mit diesen Matrigel-Faser-Kompositen haben wir Methoden etabliert, die für die Charakterisierung von neuronalen Netzwerken erforderlich sind. Anstelle von Neuronen haben wir dafür eine Mausfibroblasten-Zelllinie benutzt und mit dem GlyR transfiziert. Zellen in den Matrigel-Faser-Komposite zeigten eine hohe Viabilität, konnten immunocytochemisch angefärbt werden, und mithilfe von elektrophysiologischen Methoden gemessen werden. Darauf aufbauend haben wir primäre kortikale Mausneurone in faserverstärktem Matrigel für bis zu 21 Tage wachsen lassen. Die Neurone zeigten eine hohe Viabilität und durch Quantifikation von Neuritenlänge und Synapsendichte konnte ein vollständig ausgeformtes Netzwerk nach 7 Tagen in 3D-Kultur demonstriert werden. Mithilfe von Calcium-Imaging und Patch-Clamp-Experimenten wurden spontane Netzwerkaktivität, funktionelle spannungsgesteuerte Natriumkanäle, sowie Aktionspotentiale nachgewiesen. Somit konnten wir durch Kombination von einem ultraweichen Hydrogel mit Fasergerüsten erfolgreich ein Zellkulturmodell entwickeln, das zukünftig für die Erforschung von Zell-Zell-Interaktionen zwischen primären Gehirnzellen und Tumorzellen benutzt werden kann. Damit kann die molekulare Pathologie von aggressiven Hirntumoren und möglicherweise anderen Krankheitsmechanismen weiter aufgeklärt werden. KW - Zellkultur KW - Ionenkanal KW - Aminobuttersäure KW - Glycin KW - Rezeptor KW - 3D cell culture KW - neuronal network KW - ion channel KW - glycine receptor KW - GABA receptor KW - 3D-Zellkultur KW - Nervennetz KW - Glycinrezeptor KW - GABA-Rezeptor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251700 ER - TY - THES A1 - Massih, Bita T1 - Human stem cell-based models to analyze the pathophysiology of motor neuron diseases T1 - Humane Stammzell-basierte Modelle zur Analyse der Pathophysiologie von Motoneuronerkrankungen N2 - Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins. N2 - Motoneuronerkrankungen (MNE) umfassen eine Vielzahl klinisch und genetisch heterogener Erkrankungen, die zur Degeneration von Motoneuronen (MN) und zu beeinträchtigten motorischen Funktionen führen. MN koordinieren und steuern Muskelbewegungen, indem sie ihr Signal an eine Zielmuskelzelle übertragen. Die synaptischen Endungen des MN-Axons und die Kontaktstelle der Muskelzelle bilden dabei die präsynaptischen und postsynaptischen Strukturen der neuromuskulären Endplatte (NME). Bei MNE zeichnen sich synaptische Dysfunktion und Synapseneliminierung bereits vor dem Verlust von MN ab, was darauf hindeutet, dass die NME ein frühes Ziel in der pathophysiologischen Kaskade ist, die zum MN-Tod führt. In dieser Studie haben wir neue experimentelle Strategien zur Analyse humaner MNE mithilfe von humanen induzierten pluripotenten Stammzellen (iPSZ) entwickelt und pathophysiologische Mechanismen bei zwei verschiedenen MNE untersucht. Um humane MNE zu untersuchen sind Zellkultursysteme erforderlich, die die Verbindung von MN mit ihren Zielmuskelzellen ermöglichen, um NME zu bilden. Im ersten Teil dieser Studie haben wir ein humanes neuromuskuläres Co-Kultursystem etabliert und validiert, das aus iPSZ abgeleiteten MN und 3D Skelettmuskelgewebe aus Myoblasten besteht. Wir haben 3D Muskelgewebe erzeugt, indem wir primäre Myoblasten in einer definierten extrazellulären Matrix in selbst gefertigten Silikonschalen kultivierten, die die 3D-Gewebebildung unterstützen. Anschließend wurden iPSZ von gesunden Spendern und iPSZ von Patienten mit der MNE Amyotrophe Lateralsklerose (ALS) in MN differenziert und für neuromuskuläre 3D Co-Kulturen verwendet. Mithilfe von immunhistochemischen Untersuchungen, Calcium-Imaging und pharmakologischen Stimulationen konnten wir die Funktionalität des 3D Muskelgewebes und neuromuskulären 3D Co-Kulturen charakterisieren und validieren. Anschließend wurde das System als in vitro Modell zur Untersuchung der Pathophysiologie von ALS verwendet. ALS Co-Kulturen mit MN, die eine Superoxid Dismutase 1 (SOD1)-Genmutation aufwiesen, zeigten eine Abnahme der neuromuskulären Verbindung, der Muskelkontraktion und des axonalen Wachstums. Zusammenfassend stellt dieses Co-Kultursystem ein humanes Modell für die Untersuchung von MNE dar, das Aspekte der ALS-Physiologie rekapitulieren kann. Im zweiten Teil dieser Studie konnten wir eine Beeinträchtigung der unkonventionellen Proteinsekretion (UPS) von Sod1 als pathologischen Mechanismus bei Pleckstrin homology domain-containing family G member 5 (Plekhg5)-assoziiertem MNE identifizieren. Sod1 ist ein cytosolisches Protein ohne Signalsequenz für konventionelle Sekretion. Stattdessen wird die UPS über sekretorische Autophagie-Mechanismen reguliert. Unsere Ergebnisse zeigen, dass Plekhg5-Depletion in primären MN und NSC34-Zellen zu einer beeinträchtigten Sekretion von Wildtyp-Sod1 führt, was darauf hinweist, dass die UPS von Sod1 Plekgh5 abhängig ist. Indem verschiedene Schritte während der Biogenese von Autophagosomen gestört wurden, konnten wir nachweisen, dass die Plekhg5-regulierte Sod1-Sekretion Autophagie abhängig ist. Um unsere Ergebnisse in einem klinisch relevanteren Modell zu analysieren, wurden humane iPSZ-MN von gesunden Spendern und ALS-Patienten mit SOD1-Mutationen untersucht. Hier fand sich, dass die Sekretion von mutiertem SOD1 in ALS-MN im Vergleich zu gesunden und isogenen Kontrollen verringert ist. Dabei konnten wir zeigen, dass eine verringerte SOD1 Sekretion in ALS-MNs mit einer verringerten Expression von PLEKHG5 einhergeht. Um diese Korrelation zu bestätigen, wurden Kontroll-MN nach PLEKHG5-Depletion untersucht und eine verminderte SOD1-Sekretion dokumentiert, was auf eine PLEKHG5 Abhängigkeit hindeutet. Zusammenfassend konnten wir zeigen, dass Plekh5 die UPS von Sod1 in Maus MN und humanen MN reguliert und dass die Sod1-Sekretion Autophagie abhängig erfolgt. Unsere Daten belegen eine bislang noch nicht gezeigte mechanistische Verknüpfung zwischen zwei MNE-assoziierten Proteinen. KW - Tissue Engineering KW - NMJ (neuromuscular junction) KW - MND KW - SOD1 KW - ALS KW - PLEKHG5 KW - Co-culture KW - 3D muscle KW - Motoneuron KW - Stammzellen KW - Neuromuskuläre Endplatte KW - Induzierte pluripotente Stammzelle KW - Motoneuron-Krankheit KW - Myatrophische Lateralsklerose KW - Zellkultur KW - Motorische Endplatte KW - Induced pluripotent stem cells KW - Motor neuron disease KW - Amyotrophic lateral sclerosis KW - Cell culture Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346374 PB - Frontiers in Cell and Developmental Biology ER - TY - THES A1 - Bellwon, Patricia T1 - Kinetic assessment by in vitro approaches - A contribution to reduce animals in toxicity testing T1 - Evaluierung der Kinetik anhand von in vitro Systemen - Ein Beitrag um die Anzahl von Tierversuchen zur Toxizitätsprüfung zu reduzieren N2 - The adoption of directives and regulations by the EU requires the development of alternative testing strategies as opposed to animal testing for risk assessment of xenobiotics. Additionally, high attrition rates of drugs late in the discovery phase demand improvement of current test batteries applied in the preclinical phase within the pharmaceutical area. These issues were taken up by the EU founded 7th Framework Program “Predict-IV”; with the overall goal to improve the predictability of safety of an investigational product, after repeated exposure, by integration of “omics” technologies applied on well established in vitro approaches. Three major target organs for drug-induced toxicity were in focus: liver, kidney and central nervous system. To relate obtained dynamic data with the in vivo situation, kinetics of the test compounds have to be evaluated and extrapolated by physiologically based pharmacokinetic modeling. This thesis assessed in vitro kinetics of the selected test compounds (cyclosporine A, adefovir dipivoxil and cisplatinum) regarding their reliability and relevance to respective in vivo pharmacokinetics. Cells were exposed daily or every other day to the test compounds at two concentration levels (toxic and non-toxic) for up to 14 days. Concentrations of the test compounds or their major biotransformation products were determined by LC-MS/MS or ICP-MS in vehicle, media, cells and plastic adsorption samples generated at five different time-points on the first and the last treatment day. Cyclosporine A bioaccumulation was evident in primary rat hepatocytes (PRH) at the high concentration, while efficient biotransformation mediated by CYP3A4 and CYP3A5 was determined in primary human hepatocytes (PHH) and HepaRG cells. The lower biotransformation in PRH is in accordance with observation made in vivo with the rat being a poor model for CYP3A biotransformation. Further, inter-assay variability was noticed in PHH caused by biological variability in CYP3A4 and CYP3A5 activity in human donors. The inter-assay variability observed for PRH and HepaRG cells was a result of differences between vehicles regarding their cyclosporine A content. Cyclosporine A biotransformation was more prominent in HepaRG cells due to stable and high CYP3A4 and CYP3A5 activity. In addition, in vitro clearances were calculated and scaled to in vivo. All scaled in vitro clearances were overestimated (PRH: 10-fold, PHH: 2-fold, HepaRG cells: 2-fold). These results should be proven by physiologically-based pharmacokinetic modeling and additional experiments, in order to verify that these overestimations are constant for each system and subsequently can be diminished by implementation of further scaling factors. Brain cell cultures, primary neuronal culture of mouse cortex cells and primary aggregating rat brain cells, revealed fast achieved steady state levels of cyclosporine A. This indicates a chemical distribution of cyclosporine A between the aqueous and organic phases and only minor involvement of biological processes such as active transport and biotransformation. Hence, cyclosporine A uptake into cells is presumably transport mediated, supported by findings of transporter experiments performed on a parallel artificial membrane and Caco-2 cells. Plastic adsorption of cyclosporine A was significant, but different for each model, and should be considered by physiologically based pharmacokinetic modeling. Kinetics of adefovir dipivoxil highlights the limits of in vitro approaches. Active transporters are required for adefovir uptake, but were not functional in RPTECT/TERT1. Therefore, adefovir uptake was limited to passive diffusion of adefovir dipivoxil, which itself degrades time-dependently under culture conditions. Cisplatinum kinetics, studied in RPTEC/TERT1 cells, indicated intracellular enrichment of platinum, while significant bioaccumulation was not noted. This could be due to cisplatinum not reaching steady state levels within 14 days repeated exposure. As shown in vivo, active transport occurred from the basolateral to apical side, but with lower velocity. Hence, obtained data need to be modeled to estimate cellular processes, which can be scaled and compared to in vivo. Repeated daily exposure to two different drug concentrations makes it possible to account for bioaccumulation at toxic concentrations or biotransformation/extrusion at non-toxic concentrations. Potential errors leading to misinterpretation of data were reduced by analyses of the vehicles as the applied drug concentrations do not necessarily correspond to the nominal concentrations. Finally, analyses of separate compartments (medium, cells, plastic) give insights into a compound’s distribution, reduce misprediction of cellular processes, e.g. biotransformation, and help to interpret kinetic data. On the other hand, the limits of in vitro approaches have also been pointed out. For correct extrapolation to in vivo, it is essential that the studied in vitro system exhibits the functionality of proteins, which play a key role in the specific drug induced toxicity. Considering the benefits and limitations, it is worth to validate this long-term treatment experimental set-up and expand it on co-culture systems and on organs-on-chips with regard to alternative toxicity testing strategies for repeated dose toxicity studies. N2 - Die Erlassung von Richtlinien und Verordnungen durch die EU führte zu der Entwicklung von alternativen Testmethoden als Ersatz von Tierversuchen zur Risikobewertung von Xenobiotika. Des Weiteren weisen hohe Ausfallraten von Arzneimitteln in der späten Entwicklungsphase auf die Notwendigkeit hin, die bisher verwendeten Testmethoden der präklinischen Phase zu verbessern. Diese Punkte wurden in dem im siebten Rahmenprogramm der EU finanzierten Projekt „Predict-IV“ aufgegriffen. Ziel des Projektes war es, die Vorhersage der Arzneimittelsicherheit durch integrierte „omics“-Technologien, angewendet an etablierten in vitro Ansätzen, zu verbessern. Dabei standen drei Zielorgane bzgl. Arzneimittel-induzierter Organtoxizität im Mittelpunkt: Leber, Niere und zentrales Nervensystem, die jeweils durch Zelllinien oder primäre Zellen vertreten waren. Um die in vitro generierten Dynamik-Daten mit der in vivo Situation in Korrelation zu bringen, muss die Kinetik der Testsubstanz berücksichtigt und die Ergebnisse mit Hilfe von physiologisch-basierter pharmakokinetischer Modellierung extrapoliert werden. Ziel der vorliegenden Arbeit war es, Kinetik-Daten der gewählten Testsubstanzen (Cyclosporin A, Adefovir dipivoxil und Cisplatin) in vitro zu erheben und bzgl. ihrer Zuverlässigkeit sowie ihrer Relevanz verglichen mit in vivo Daten zu beurteilen. Hierfür wurden kultivierte Zellen täglich bzw. jeden zweiten Tag für zwei Wochen mit zwei verschiedenen Konzentrationen (toxisch und nicht toxisch) des Arzneimittels behandelt. Der Gehalt des applizierten Arzneimittels oder die Hauptmetaboliten wurden mittels LC MS/MS oder ICP-MS in Vehikel, Medium und Zellen sowie die vom Plastik adsorbierte Menge in Proben bestimmt, die am ersten und letzten Behandlungstag zu fünf unterschiedlichen Zeitpunkten gewonnen wurden. Eine eindeutige Bioakkumulation von Cyclosporin A wurde in primären Rattenhepatozyten nach Behandlung mit der hohen Konzentration festgestellt. Eine effiziente CYP3A4- und CYP3A5-vermittelte Biotransformation von Cyclosporin A wurde für primäre humane Hepatozyten sowie HepaRG Zellen beobachtet. Diese Ergebnisse stimmten mit der in vivo Situation überein. Ratten sind aufgrund ihrer geringen CYP3A Aktivität schlechte Tiermodelle für CYP3A-Biotransformationsstudien. Des Weiteren wurden Interassay-Schwankungen bei primären human Hepatozyten bemerkt, die auf die biologische Variabilität der CYP3A4- sowie CYP3A5-Aktivität zwischen den menschlichen Spendern zurückzuführen sind. Rattenhepatozyten und HepaRG Zellen hingegen wiesen Interassay-Schwankungen auf, die durch unterschiedliche Cyclosporin A Behandlungskonzentrationen zwischen den Replikaten verursacht wurden. Die Cyclosporin A Biotransformation war in HepaRG Zellen am stärksten ausgeprägt, was durch stabile und wesentlich höhere CYP3A4- und CYP3A5-Aktivität in HepaRG Zellen zu erklären ist. Zusätzlich wurden die in vitro Clearance-Werte bestimmt und auf in vivo Clearance-Werte extrapoliert. Alle extrapolierten Werte waren zu hoch geschätzt (primäre Rattenhepatozyten: 10fach, primäre human Hepatpzyten: 2fach, HepaRG Zellen: 2fach). Diese Ergebnisse sollten mittels physiologisch-basierter pharmakokinetischer Modellierung sowie durch weitere Experimente überprüft werden, um zu ermitteln, ob diese hohen Schätzungen für jedes System konstant sind und somit durch die Einführung von weiteren Skalierungsfaktoren verringert werden können. Kultivierte Gehirnzellen, primäre Nervenzellkulturen der Kortex von Mäusen und primäre Hirnzellaggregate der Ratte, zeigten schnell erreichte Cyclosporin A Gleichgewichtskonzentrationen. Diese Ergebnisse deuteten auf eine Verteilung von Cyclosporin A zwischen der wässrigen und organischen Phase hin, wobei biologische Prozesse nur eine untergeordnete Rolle spielen. Daher scheint die intrazelluläre Cyclosporin A Aufnahme Transporter-vermittelt zu sein. Ergebnisse der Transporter Experimente, die an einer künstlichen Membran und Caco-2 Zellen durchgeführt wurden, unterstützten diese Hypothese. Messungen der Plastikbindung von Cyclosporin A zeigten signifikante, aber für jedes Zellsystem unterschiedliche, Adsorptionsraten, die mittels physiologisch-basierter pharmakokinetischer Modellierung berücksichtigt werden sollten. Die Kinetik von Adefovir dipivoxil machte auf die Nachteile von in vitro Versuchen aufmerksam. Für die intrazelluläre Aufnahme von Adefovir sind aktive Transportproteine nötig, die jedoch in der Nierenzelllinie RPTEC/TERT1 nicht funktionell vorhanden sind. Daher war die Aufnahme von Adefovir auf die passive Diffusion von Adefovir dipivoxil beschränkt, das aber auch zeitabhängig unter den experimentellen Konditionen zerfiel. Die an RPTEC/TERT1 Zellen untersuchte Kinetik von Cisplatin deutete auf eine intrazelluläre Platin-Anreicherung hin, die jedoch nicht in einer signifikanten Bioakkumulation resultierte. Möglicherweise sind innerhalb von 14 Tagen die Gleichgewichtskonzentrationen von Cisplatin noch nicht erreicht. Die Kinetikprofile von Cisplatin in Medium ließen einen aktiven, von der basolateralen zur apikalen Seite gerichteten Cisplatin Transport erkennen, wie schon in vivo beschrieben, wobei die Geschwindigkeit dieser Transportprozesse in vitro langsamer zu sein scheint als in der intakte Niere. Daher müssen die generierten Daten zur Schätzung von zellulären Prozessen modelliert werden, um durch anschließende Extrapolation mit in vivo Daten verglichen werden zu können. Abschließend bleibt zu sagen, dass das experimentelle Design vorteilhaft war. Wiederholte tägliche Administration von zwei unterschiedlichen Konzentrationen eines Medikaments ermöglichte die Erfassung von Bioakkumulation bei toxischen Konzentrationen sowie Biotransformation/Export bei nicht-toxischen Konzentrationen. Potenzielle Fehler, die zu einer Fehlinterpretation führen könnten, wurden durch die exakte Bestimmung der tatsächlich applizierten Arzneimittelmenge reduziert, da nicht immer die applizierte Konzentration mit der Nominalkonzentration übereinstimmt. Darüber hinaus erwies es sich als Vorteil, die Arzneimittelkonzentrationen in den einzelnen Kompartimenten (Medium, Zellen und Plastik) zu bestimmen. Somit konnten zum einen Erkenntnisse über die Verteilung der Substanz gewonnen werden und zum anderen Fehleinschätzungen von zellulären Prozessen, z.B. Biotransformation, verhindert werden, was letzten Endes bei die Interpretation von Kinetik-Daten behilflich ist. Jedoch, wurden auch die Grenzen von in vitro Ansätzen deutlich. Für eine korrekte Extrapolation ist es unverzichtbar, dass die untersuchten in vitro Systeme funktionierende Proteine aufweisen, die bei der untersuchten Arzneimittel-induzierten Toxizität eine Schlüsselrolle übernehmen. Abschließend kann festgehalten werden, dass es, unter Berücksichtigung der Vor- und Nachteile, von Nutzen sein kann diesen Versuchsansatz der Langzeitbehandlung zu validieren und darüber hinaus auf Co Kultursysteme sowie Organ-Chips anzuwenden hinsichtlich der Entwicklung von Alternativmethoden für Toxizitätsstudien bei wiederholter Gabe. KW - cell culture KW - pharmacokinetics KW - repeated dose KW - in vitro KW - toxicity testing KW - Zellkultur KW - In vitro KW - Pharmakokinetik KW - Toxizitätstest Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122693 ER - TY - THES A1 - Brühlmann, David T1 - Tailoring Recombinant Protein Quality by Rational Media Design T1 - Der Einfluss von Zellkulturmedien auf Qualitätsattribute von rekombinanten Proteinen N2 - Nowadays, more than half of the biotherapeutics are produced in mammalian cell lines as a result of correct protein folding and assembly as well as their faculty to bring about a variety of post-translational modifications. The widespread progression of biosimilars has moved the focus in mammalian cell-culture process development. Thereby, the modulation of quality attributes of recombinant therapeutic proteins has increasingly gained importance from early process development stages. Protein quality directly shapes the clinical efficacy and safety in vivo, and therefore, the control of the complex post-translational modifications, such as glycosylation (e.g. high mannose, fucosylation, galactosylation and sialylation), charge variants, aggregates and low-molecular-weight species formation, is pivotal for efficient receptor binding and for triggering the desired immune responses in patients. In the frame of biosimilar development, product quality modulation methods using the potential of the host cell line are particularly sought after to match the quality profile of the targeted reference medicinal product (RMP) as closely as possible. The environment the cell is dwelling in directly influences its metabolism and the resulting quality profile of the expressed protein. Thereby the cell culture medium plays a central role in upstream manufacturing. In this work, concentration adjustment of selected media components and supplementation with a variety of compounds was performed to alter various metabolic pathways, enzyme activities and in some cases the gene expression levels of Chinese Hamster Ovary (CHO) cells in culture. The supplementation of cell culture medium with the trisaccharide raffinose in fed-batch cultures entailed an increase of the abundance of high mannose glycans in two different CHO cell lines. Raffinose especially favored mannose 5 glycans. At the same time, it impaired cell culture performance, induced changes on the intracellular nucleotide levels and even varied the expression levels of glycosylation-related genes. Supplementation with a number of galactosyltransferase inhibiting compounds, in particular fluorinated galactose analogs (alpha- and beta-2F-peracetyl-galactose), consistently decreased the production of galactosylated monoclonal antibodies (mAb). By means of targeted addition during the culture rather than at the beginning, the inhibition was further increased, while limiting detrimental effects on both growth and productivity. High-throughput screening in 96-deepwell plates showed that spermine and L-ornithine also reduced the level of galactosylation. On the other hand, exploratory screening of a variety of potentially disulfide-bridge-reducing agents highlighted that the inherent low-molecular-species level of the proprietary platform cell culture process was likely due to favored reduction. This hypothesis was reinforced by the observation that supplementation of cysteine and N-acetylcysteine promoted fragmentation. Additionally, fragmentation decreased with higher protein expression. At that point, aiming to improve the efficiency in process development, a rational experimental design method was developed to identify and to define the optimal concentration range of quality modulating compounds by calling on a combination of high throughput fed-batch testing and multivariate data analysis. Seventeen medium supplements were tested in five parallel 96-deepwell plate experiments. The selection process of promising modulators for the follow-up experiment in shake tubes consisted in a three-step procedure, including principal component analysis, quantitative evaluation of their performance with respect to the specifications for biosimilarity and selection following a hierarchical order of decisions using a decision tree. The method resulted in a substantial improvement of the targeted glycosylation profile in only two experimental rounds. Subsequent development stages, namely validation and transfer to industrial-scale facilities require tight control of product quality. Accordingly, further mechanistic understanding of the underlying processes was acquired by non-targeted metabolomic profiling of a CHO cell line expressing a mAb cultured in four distinct process formats. Univariate analysis of intra- and extracellular metabolite and temporal glycosylation profiles provided insights in various pathways. The numerous of parameters were the main driver to carry out principal component analysis, and then, using the methodology of partial-least-square (PLS) projection on latent structures, a multivariate model was built to correlate the extracellular data with the distinct glycosylation profiles. The PLS observation model proved to be reliable and showed its great benefit for glycan pattern control in routine manufacturing, especially at large scale. Rather than relying on post-production interpretation of glycosylation results, glycosylation can be predicted in real-time based on the extracellular metabolite levels in the bioreactor. Finally, for the bioactivity assessment of the glycan differences between the biosimilar and the reference medicinal product (RMP), the health agencies may ask for in the drug registration process, extended ranges of glycan variants need to be generated so that the in vitro assays pick up the changes. The developed glycosylation modulator library enabled the generation of extreme glycosylation variants, including high mannose, afucosylated, galactosylated as well as sialic acid species of both a mAb and an antibody fusion molecule with three N-glycosylation sites. Moreover, to create increased variety, enzymatic glycoengineering was explored for galactosylation and sialylation. The glyco variants induced significant responses in the respective in vitro biological activity assays. The data of this work highlight the immense potential of cell culture medium optimization to adjust product quality. Medium and feed supplementation of a variety of compounds resulted in reproducible and important changes of the product quality profile of both mAbs and a fusion antibody. In addition to the intermediate modulation ranges that largely met the requirements for new-biological-entity and biosimilar development, medium supplementation even enabled quick and straightforward generation of extreme glycan variants suitable for biological activity testing. N2 - Mehr als die Hälfte der Biotherapeutika werden heutzutage aufgrund korrekter Proteinfaltung und korrektem Zusammenbau in tierischen Zelllinien hergestellt, welche zudem die Fähigkeit besitzen, verschiedene posttranslationale Modifikationen zu bewerkstelligen, hergestellt. Der ausgeprägte Aufschwung von Biosimilars hat den Entwicklungsschwerpunkt von Zellkulturverfahren verlagert. Dabei hat die Modulierung der Qualitätsattribute von rekombinanten Proteinen bereits in frühen Entwicklungsstadien eine wichtige Bedeutung erlangt. Die Qualitätsattribute beeinflussen die klinische Wirksamkeit und die In-Vivo-Sicherheit direkt. Somit ist die Regulierung der posttranslationalen Modifikationen, einschließlich der Glykosylierung (mannosereiche, fukosylierte, galaktosylierte und sialylierte Glykane), der Ladungsvarianten, sowie die Bildung von Aggregaten und niedermolekularen Spezien, für effiziente Rezeptorbindung und das Auslösen der gewünschten Immunantwort in Patienten entscheidend. Im Rahmen der Biosimilarentwicklung werden Methoden zur Anpassung der Produktqualität innerhalb des Potentials der Wirtszelle gesucht, um sie möglichst genau dem Referenzarzneimittel anzugleichen. Die Umgebung, in der die Zelle verweilt, beeinflusst ihren Metabolismus und das resultierende Produktqualitätsprofil. Dabei spielen Medien eine zentrale Rolle in der Zellkultur. Im Rahmen dieser Doktorarbeit wurden durch Adjustierung von ausgewählten Medienbestandteilen und Ergänzung mit einer Vielfalt von Stoffen diverse Stoffwechselwege, Enzymaktivitäten und in einigen Fällen das Genexpressionsniveau von kultivierten Chinesischen Hamster-Ovarialzellen (CHO) verändert. Die Ergänzung von Zellkulturmedium mit Raffinose, ein Trisaccharid, führte zu einer Erhöhung des mannosereichen Glykosylierungsmusters in zwei unterschiedlichen CHO-Zelllinien. Raffinose begünstigte hauptsächlich Mannose-5-Spezien. Gleichzeitig wurde die Zellkulturleistung beeinträchtigt und zudem intrazelluläre Nukleotidkonzentrationen sowie das Expressionsniveau von Glykosylierungsgenen verändert. Ergänzung mit mehreren Inhibitoren der Galaktosyltransferase, insbesondere fluorierte Galaktosenachbildungen (Alpha- und Beta-2F-Peracetyl-Galaktose), verringerte stetig die Produktion von galaktosylierten monoklonalen Antikörpern (mAb). Durch gezielte Zugabe im Verlauf der Kultur, statt bereits am Anfang, wurde die Inhibition weiter erhöht, und dabei die Einwirkung auf das Zellwachstum und die Produktivität beschränkt. Ein Hochdurchsatz-Screening in 96-Deep-Well-Platten zeigte, dass Spermin und L-Ornithin auch das Ausmaß der Galaktosylierung reduzierte. Andererseits zeigten erste Nachforschungen anhand eines Screenings einer Auswahl von potenziellen Disulfidbrücken-Reduktionsmittel, dass wahrscheinlich begünstigte Reduktion das inhärente Niedermolekular-Speziesniveau des firmeneigenen Zellkulturplattformverfahrens verursacht. Die Hypothese wurde durch die Beigabe von Cystein und N-Acetylcystein bekräftigt. Diese Stoffe begünstigten die Fragmentierung, wohingegen sie bei höherer Proteinexpression abnahm. Mit dem Ziel die Entwicklungseffizienz zu steigern, wurde daraufhin zur Identifikation von qualitätsverändernden Stoffen und Bestimmung der optimalen Konzentrationsbereichen eine rationale Versuchsanordnungsmethode entwickelt. Dazu wurde eine Kombination von Hochdurchsatz-Fed-Batch-Tests und multivariater Datenanalyse herbeigezogen. Siebzehn Mediumergänzungsstoffe wurden in fünf parallelen 96-Deep-Well-Platten-Experimenten getestet. Das Auswahlverfahren von erfolgsversprechenden Modulatoren fürs Nachfolgeexperiment in Schüttelröhrchen umfasste drei Schritte: Hauptkomponentenanalyse, quantitative Evaluierung der Leistung der Modulatoren hinsichtlich der Biosimilaritätsspezifikationen und die Auswahl in Anlehnung an eine hierarchische Entscheidungsreihenfolge mit Hilfe eines Entscheidungsbaums. Die Methode führte in nur zwei Versuchsreihen zu einer erheblichen Annäherung an das gewünschte Glykosylierungsprofil. Anschließende Entwicklungsschritte (Validierung und Transfer in die großtechnische Anlage) erforden eine rigorose Kontrolle der Produktqualität. Demzufolge konnte dank der Non-Targeted Metabolomics Analyse von vier verschiedenen Herstellungsverfahren einer mAb exprimierenden CHO-Zelllinie weitere mechanistische Kenntnisse der zugrunde liegenden Vorgängen gewonnen werden. Univariate Analysen der intra- und extrazellulären Stoffwechselprodukte und die zeitliche Glykosylierungsprofile lieferten einen Einblick in verschiedene Stoffwechselwege. Die Vielzahl von Parametern führte dazu, nach dem Prinzip der Hauptkomponentenanalyse vorzugehen, und dann anhand der Partial Least Squares (PLS)-Projektion auf latente Strukturen ein multivariates Modell zu erstellen, das die extrazellulären Daten mit den individuellen Glykosylierungsprofilen korreliert. Das PLS Beobachtungsmodell stellte sich als verlässlich heraus und zeigte seinen außerordentlichen Nutzen zur Regulierung der Glykanen in der Routineherstellung, insbesondere in der Großanlage. Anstatt sich auf Glykosylierungsresultate nach dem Ende der Produktion zu verlassen, kann die Glykosylierung, basierend auf den Niveaus der extrazellulären Stoffwechselprodukte im Bioreaktor, in Echtzeit vorausgesagt werden. Schließlich können im Rahmen des Arzneigenehmigungsverfahrens Gesundheitsbehörden verlangen, die Glykanunterschiede zwischen dem Biosimilar und dem Referenzarzneimittel zu untersuchen. Damit der biologische Test die Unterschiede nachweisen kann, muss eine erweiterte Palette von Glykanvarianten hergestellt werden. Die entwickelte Glykosylierungsmodulierungsbibliothek ermöglichte, extreme Varianten für mannosereiche, afukosylierte, galaktosylierte und sialylierte Glykane von mAb und einem Antikörperfusionsmolekül mit drei N-Glykosylierungsstellen zu generieren. Für erhöhte Variantenvielfalt wurde die enzymatische Glykoengineering Technologie für die Galaktosylierung und Sialylierung untersucht. Die Glykanvarianten erzeugten signifikante Antworten in der jeweiligen In-Vitro-Bestimmung der biologischen Aktivität. Die Ergebnisse unterstreichen das immense Potential von Zellkulturmediumoptimierung zur Anpassung der Produktqualität. Ergänzung des Mediums und der Nährstofflösung brachte reproduzierbare und beträchtliche Veränderungen der Produktqualität von mAb und eines Fusionsantikörpers hervor. Zusätzlich zu den intermediären Modulierungsbereichen, die mehr als ausreichend den Anforderungen für die Entwicklung von neuen biologischen Wirkstoffen und Biosimilars genügen, ermöglichte die Mediumergänzung auf schnelle und einfache Art und Weise selbst extreme Glykanvarianten zu bilden, die für die Bestimmung der biologischen Aktivität geeignet waren. KW - CHO cell culture KW - product qualitymodulation KW - media design KW - metabolism KW - glycosylation KW - high throughput KW - Zellkultur KW - CHO-Zelle KW - Produktivität KW - Nährboden KW - Stoffwechsel Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147345 ER -