TY - JOUR A1 - Calebiro, Davide A1 - Maiellaro, Isabella T1 - cAMP signaling microdomains and their observation by optical methods JF - Frontiers in Cellular Neuroscience N2 - The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains. KW - G protein-coupled receptor KW - cyclic AMP KW - signaling microdomain KW - fluorescence resonance energy transfer KW - neurons Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118252 SN - 1662-5102 VL - 8 ER - TY - THES A1 - Werthmann, Ruth T1 - Echtzeit-Untersuchungen zur Thrombin-abhängigen Änderung der cAMP-Konzentration in lebenden Endothelzellen T1 - Real-time monitoring of thrombin-dependent changes of the cAMP concentration in living endothelial cells N2 - Das Endothel bildet eine einschichtige Zellbarriere zwischen Blut und interstitiellem Gewebe, deren Durchlässigkeit entscheidend durch die sekundären Botenstoffe Ca2+ und cAMP reguliert wird. Während Ca2+ durch eine verstärkte Kontraktion der Endothelzellen die Permeabilität erhöht, fördert cAMP die Adhäsion der Zellen und unterstützt somit die Barrierefunktion. Es ist bekannt, dass Thrombin durch einen Anstieg der intrazellulären Ca2+-Konzentration und vermutlich auch durch eine Hemmung der cAMP-Konzentration zu einer Permeabilitätserhöhung führt. Ziel dieser Arbeit war es, Thrombin-induzierte Änderungen der cAMP-Konzentration in Echtzeit in lebenden Endothelzellen mittels Fluorescence-Resonance-Energy-Transfer (FRET) zu untersuchen. Hierfür wurden Human-Umbilical-Vein-Endothelial-Cells (HUVECs) mit dem FRET-basierten cAMP-Sensor Epac1-camps transfiziert. Die Bindung von cAMP an Epac1-camps führt zu einer Konformationsänderung des Sensors und damit zu einer Abschwächung des FRET. Mit Hilfe dieses Sensors kann die cAMP-Konzentration mit hoher zeitlicher Auflösung in einzelnen lebenden Zellen gemessen werden. Untersucht wurde der Effekt von Thrombin auf die cAMP-Konzentration in Endothelzellen, deren cAMP-Konzentration durch Stimulierung endogener β-Rezeptoren erhöht war. Thrombin erniedrigte Ca2+-abhängig die cAMP-Konzentration um ca. 30 %. Dieser Abfall der cAMP-Konzentration folgte zeitlich verzögert dem Thrombin-induzierten Ca2+-Signal. Die cAMP-Konzentration erreichte ca. 30 s nach der Thrombinzugabe ein Minimum und stieg danach wieder an. Durch die Herunterregulierung der durch Ca2+ direkt inhibierten Adenylatzyklase 6 (AC6) mittels siRNA wurde die Thrombin-induzierte Abnahme der cAMP-Konzentration vollständig aufgehoben. Dies bestätigte, dass Thrombin durch die Ca2+-vermittelte Inhibierung der AC6 eine Abnahme der cAMP-Konzentration verursacht. Ohne β-adrenerge Stimulation führte die Applikation von Thrombin zu einem langsamen Anstieg der cAMP-Konzentration, der mehrere Minuten anhielt. Dieser cAMP-Konzentrationsanstieg beruhte auf der Ca2+-abhängigen Aktivierung der Phospholipase A2 (PLA2). Diese setzt Arachidonsäure aus Membranphospholipiden frei, die als Substrat für die Synthese verschiedener Prostaglandine dient. Durch die pharmakologische Beeinflussung von Zyklooxygenasen und Prostazyklinrezeptoren konnte gezeigt werden, dass die Synthese von Prostazyklin und die anschließende Stimulation Gs-gekoppelter Prostazyklinrezeptoren zum Thrombin-induzierten Anstieg der cAMP-Konzentration führte. Da die Physiologie der Endothelzellen im Gefäß stark von Faktoren aus der unmittelbaren Umgebung beeinflusst wird, ist die Messung der Änderungen der cAMP-Konzentration in Endothelzellen, die sich innerhalb eines Gewebes befinden, von sehr großer Bedeutung. Deshalb war die Generierung transgener Mäuse mit einer gewebespezifischen Expression des FRET-Sensors Epac1-camps in Endothelzellen ein weiteres Ziel dieser Arbeit. Durch Anwendung eines Cre-Rekombinase/loxP-Ansatzes konnten transgene Mäuse generiert werden, die Epac1-camps spezifisch in Endothelzellen exprimierten. An isolierten pulmonären Endothelzellen konnte die Funktionalität des transgen exprimierten Sensors Epac1-camps nachgewiesen werden. Die Echtzeitmessung der Thrombin-induzierten Änderungen der cAMP-Konzentration verdeutlichte ein zeitlich sehr komplexes Wechselspiel zwischen Ca2+- und cAMP-Signalen, das die Barrierefunktion des Endothels maßgeblich beeinflussen wird. Die transgene Expression von Epac1-camps in Endothelzellen ermöglicht in Zukunft die Untersuchung der Thrombin-verursachten Änderungen der cAMP-Konzentration und der Permeabilität innerhalb eines intakten Gefäßes. N2 - Endothelial cells form a semi permeable barrier between blood and interstitial tissues. The permeability of this barrier is mainly regulated by the second messengers Ca2+ and cAMP. While Ca2+ increases the permeability by inducing cell contraction, cAMP increases the adherence of the cells and, thereby, supports the barrier function. The Ca2+-elevating agent thrombin was demonstrated to increase endothelial permeability and to decrease cAMP levels. The aim of this thesis was to investigate thrombin-induced changes of the cAMP concentration in real time in living endothelial cells via fluorescence resonance energy transfer (FRET). Therefore, human umbilical vein endothelial cells (HUVECs) were transfected with the FRET-based cAMP sensor Epac1-camps. Binding of cAMP to the binding domain of Epac1-camps induces a conformational change of the sensor that results in a decrease of FRET. With help of this sensor, changes in cAMP concentration can be monitored with high temporal resolution. First, the influence of thrombin on cAMP levels was investigated after elevating cAMP levels by stimulation of β-adrenergic receptors. Thrombin led to a Ca2+-dependent decrease of cAMP levels by approximately 30 %. The decrease of cAMP levels was delayed compared to the thrombin-induced Ca2+ signal. This decrease was also transient and reached a minimum value 30 s after thrombin stimulation. A siRNA-mediated downregulation of the Ca2+-inhibited adenylyl cyclase 6 (AC6) completely abolished the thrombin-induced decrease of cAMP concentration. This provided the first direct evidence that the Ca2+-mediated inhibition of AC6 accounts for the thrombin-induced decrease in cAMP levels. In the absence of a β-adrenergic-mediated increase of cAMP concentration, thrombin led to a slow increase in cAMP concentration that lasted for several minutes. This increase in cAMP concentration was caused by the Ca2+-dependent activation of phospholipase A2 (PLA2). PLA2 releases arachidonic acid, which represents the substrate for prostaglandin synthesis. It was confirmed by pharmacological interference of cyclooxygenases and prostacyclin receptors that the synthesis of prostacyclin and subsequent stimulation of Gs-protein-coupled prostacyclin receptors caused the thrombin-induced increase in cAMP concentration. The real time monitoring of changes in cAMP concentration in endothelial cells within the vascular system is highly important as the physiology of endothelial cells in vivo is strongly influenced by factors contained in the surrounding blood or tissue. Therefore, a further aim of this thesis was the generation of transgenic mice expressing the FRET-based sensor Epac1-camps specifically in endothelial cells. Using a Cre-recombinase/loxP-approach transgenic mice were generated that specifically expressed Epac1-camps in endothelial cells, and the functionality of the transgenic sensor was proven in isolated pulmonary endothelial cells. Real time monitoring of thrombin-induced changes of cAMP concentration in endothelial cells revealed a temporally complex crosstalk between Ca2+ and cAMP signals that will affect endothelial barrier function. The transgenic expression of Epac1-camps opens the door for the investigation of thrombin-induced changes of cAMP levels and of endothelial permeability within intact vessels. KW - Cyclo-AMP KW - Endothelzelle KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Thrombin KW - cyclo-AMP KW - endothelial cells KW - fluorescence resonance energy transfer KW - thrombin Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46066 ER - TY - JOUR A1 - Lohse, Christian A1 - Bock, Andreas A1 - Maiellaro, Isabella A1 - Hannawacker, Annette A1 - Schad, Lothar R. A1 - Lohse, Martin J. A1 - Bauer, Wolfgang R. T1 - Experimental and mathematical analysis of cAMP nanodomains JF - PLoS ONE N2 - In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells. KW - fluorescence resonance energy transfer KW - yellow fluorescent protein KW - radii KW - adenylyl cyclase signaling cascade KW - cell fusion KW - cytosol KW - isoproterenol KW - absorption KW - cyclic nucleotides such as cyclic adenosine monophosphate Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170972 VL - 12 IS - 4 ER - TY - JOUR A1 - Matera, Carlo A1 - Kauk, Michael A1 - Cirillo, Davide A1 - Maspero, Marco A1 - Papotto, Claudio A1 - Volpato, Daniela A1 - Holzgrabe, Ulrike A1 - De Amici, Marco A1 - Hoffmann, Carsten A1 - Dallanoce, Clelia T1 - Novel Xanomeline-containing bitopic ligands of muscarinic acetylcholine receptors: design, synthesis and FRET investigation JF - Molecules N2 - In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M\(_1\), M\(_2\), M\(_4\), and M\(_5\) FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M\(_1\)/M\(_4\)-preferring orthosteric agonist Xanomeline 10 and the M\(_1\)-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M\(_1\) mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M\(_1\) and M\(_4\) mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M\(_1\) subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level. KW - muscarinic acetylcholine receptors KW - Xanomeline KW - 77-LH-28-1 KW - bitopic hybrid ligands KW - synthesis KW - fluorescence resonance energy transfer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311249 SN - 1420-3049 VL - 28 IS - 5 ER - TY - JOUR A1 - Steinmetzger, Christian A1 - Bäuerlein, Carmen A1 - Höbartner, Claudia T1 - Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers JF - Angewandte Chemie, International Edition N2 - RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Here we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding site mapping and may also be applied for responsive aptamer devices. KW - RNA aptamers KW - fluorescence resonance energy transfer KW - large stokes shift KW - isomorphic nucleobase analog KW - structure probing KW - structure probes KW - stokes shift KW - Fluoreszenzresonanz-Energietransfer KW - Isomorphe Nukleobasen-Analoga KW - RNA-Aptamere KW - Stokes-Verschiebung KW - Struktursonden Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203084 N1 - Parallel erschienen in Angewandte Chemie 2020,132, 6826–6830. DOI: 10.1002/ange.201916707 (Deutsche Ausgabe). VL - 59 ER -