TY - JOUR A1 - Dresia, Kai A1 - Kurudzija, Eldin A1 - Deeken, Jan A1 - Waxenegger-Wilfing, Günther T1 - Improved wall temperature prediction for the LUMEN rocket combustion chamber with neural networks JF - Aerospace N2 - Accurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that a surrogate model based on neural networks is able to predict the maximum wall temperature along straight cooling channels with convincing precision when trained with data from CFD simulations for simple cooling channel segments. In this paper, the methodology is extended to cooling channels with curvature. The predictions of the extended model are tested against CFD simulations with different boundary conditions for the representative LUMEN combustor contour with varying geometries and heat flux densities. The high accuracy of the extended model’s predictions, suggests that it will be a valuable tool for designing and analyzing regenerative cooling systems with greater efficiency and effectiveness. KW - neural network KW - surrogate model KW - heat transfer KW - machine learning KW - LUMEN KW - rocket engine KW - regenerative cooling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319169 SN - 2226-4310 VL - 10 IS - 5 ER - TY - JOUR A1 - Bollazzi, Martin A1 - Roces, Flavio T1 - The thermoregulatory function of thatched nests in the South American grass-cutting ant, Acromyrmex heyeri N2 - The construction of mound-shaped nests by ants is considered as a behavioral adaptation to low environmental temperatures, i.e., colonies achieve higher and more stables temperatures than those of the environment. Besides the well-known nests of boreal Formica wood-ants, several species of South American leaf-cutting ants of the genus Acromyrmex construct thatched nests. Acromyrmex workers import plant fragments as building material, and arrange them so as to form a thatch covering a central chamber, where the fungus garden is located. Thus, the degree of thermoregulation attained by the fungus garden inside the thatched nest largely depends on how the thatch affects the thermal relations between the fungus and the environment. This work was aimed at studying the thermoregulatory function of the thatched nests built by the grass-cutting ant Acromyrmex heyeri Forel (Hymenoptera: Formicidae: Myrmicinae). Nest and environmental temperatures were measured as a function of solar radiation on the long-term. The thermal diffusivity of the nest thatch was measured and compared to that of the surrounding soil, in order to assess the influence of the building material on the nest’s thermoregulatory ability. The results showed that the average core temperature of thatched nests was higher than that of the environment, but remained below values harmful for the fungus. This thermoregulation was brought about by the low thermal diffusivity of the nest thatch built by workers with plant fragments, instead of the readily-available soil particles that have a higher thermal diffusivity. The thatch prevented diurnal nest overheating by the incoming solar radiation, and avoided losses of the accumulated daily heat into the cold air during the night. The adaptive value of thatching behavior in Acromyrmex leaf-cutting ants occurring in the southernmost distribution range is discussed. KW - Acromyrmex heyeri KW - building behaviour KW - thermal biology KW - nest material KW - heat transfer KW - leaf-cutting ants Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68225 ER - TY - THES A1 - Scheibner, Ralf T1 - Thermoelectric Properties of Few-Electron Quantum Dots T1 - Thermoelektrische Eigenschaften von Quantenpunkten N2 - This thesis presents an experimental study of the thermoelectrical properties of semiconductor quantum dots (QD). The measurements give information about the interplay between first order tunneling and macroscopic quantum tunneling transport effects in the presence of thermal gradients by the direct comparison of the thermoelectric response and the energy spectrum of the QD. The aim of the thesis is to contribute to the understanding of the charge and spin transport in few-electron quantum dots with respect to potential applications in future quantum computing devices. It also gives new insight into the field of low temperature thermoelectricity. The investigated QDs were defined electrostatically in a two dimensional electron gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate electrodes on top of the heterostructure. Negative voltages with respect to the potential of the 2DEG applied to the gate electrodes were used to deplete the electron gas below them and to form an isolated island of electron gas in the 2DEG which contains a few ten electrons. This QD was electrically connected to the 2DEG via two tunneling barriers. A special electron heating technique was used to create a temperature difference between the two connecting reservoirs across the QD. The resulting thermoelectric voltage was used to study the charge and spin transport processes with respect to the discrete energy spectrum and the magnetic properties of the QD. Such a two dimensional island usually exhibits a discrete energy spectrum, which is comparable to that of atoms. At temperatures below a few degrees Kelvin, the electrostatic charging energy of the QDs exceeds the thermal activation energy of the electrons in the leads, and the transport of electrons through the QD is dominated by electron-electron interaction effects. The measurements clarify the overall line shape of thermopower oscillations and the observed fine structure as well as additional spin effects in the thermoelectrical transport. The observations demonstrate that it is possible to control and optimize the strength and direction of the electronic heat flow on the scale of a single impurity and create spin-correlated thermoelectric transport in nanostructures, where the experimenter has a close control of the exact transport conditions. The results support the assumption that the performance of thermoelectric devices can be enhanced by the adjustment of the QD energy levels and by exploiting the properties of the spin-correlated charge transport via localized, spin-degenerate impurity states. Within this context, spin entropy has been identified as a driving force for the thermoelectric transport in the spin-correlated transport regime in addition to the kinetic contributions. Fundamental considerations, which are based on simple model assumptions, suggest that spin entropy plays an important role in the presence of charge valence fluctuations in the QD. The presented model gives an adequate starting point for future quantitative analysis of the thermoelectricity in the spin-correlated transport regime. These future studies might cover the physics in the limit of single electron QDs or the physics of more complex structures such as QD molecules as well as QD chains. In particular, it should be noted that the experimental investigations of the thermopower of few-electron QDs address questions concerning the entropy transport and entropy production with respect to single-bit information processing operations. These questions are of fundamental physical interest due to their close connection to the problem of minimal energy requirements in communication, and thus ultimately to the so called "Maxwell's demon" with respect to the second law of thermodynamics. N2 - Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quantenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dissertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen. Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas (2DEG) mittels nanostrukturierter, metallischer "gates" erzeugt, die auf der Oberfläche einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen Energiespektren der Quantenpunkte. Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von wenigen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge bestimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch den Quantenpunkt. Die durchgeführten Messungen erklären den Verlauf der Thermokraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruktur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quantenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreinigungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten thermoelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen, welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse untermauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quantenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weitere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt. Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten, dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weitere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime. Insbesondere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht. Dieses Problem wird häufig mittels des so genannten Maxwell'schen Dämon diskutiert und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik. KW - Quantenpunkt KW - Thermokraft KW - Thermoelektrizität KW - Wärmeübertragung KW - Coulomb-Blockade KW - Resonanz-Tunneleffekt KW - Kondo-Effekt KW - Magnetowiderstand KW - Einzelelektronentransistor KW - Spinentropie KW - mesoskopisch KW - Quantentransport KW - single electron transistor KW - SET KW - thermopower KW - spin entropy KW - heat transfer KW - mesoscopic Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26699 ER - TY - JOUR A1 - Spitznagel, N. A1 - Durig, T. A1 - Zimanowski, B. T1 - Trigger - and heat-transfer times measured during experimental molten-fuel-interactions JF - AIP Advances N2 - A modified setup featuring high speed high resolution data and video recording was developed to obtain detailed information on trigger and heat transfer times during explosive molten fuel-coolant-interaction (MFCI). MFCI occurs predominantly in configurations where water is entrapped by hot melt. The setup was modified to allow direct observation of the trigger and explosion onset. In addition the influences of experimental control and data acquisition can now be more clearly distinguished from the pure phenomena. More precise experimental studies will facilitate the description of MFCI thermodynamics. KW - temperature measurement KW - data acquisition KW - heat transfer KW - expolsions KW - shock waves Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128625 VL - 3 IS - 102126 ER - TY - THES A1 - Brendel, Harald T1 - Wärmetransport in keramischen Faserisolationen bei hohen Temperaturen T1 - Heat-transfer in ceramic fibre-insulation-materials at high temperatures N2 - Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des Wärmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte für eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im $\mu m$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen $50 \mathrm{kg/m^3}$ und $700 \mathrm{kg/m^3}$ und können als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der Dämmwirkung gegen Wärmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuvermögens im relevanten Wellenlängenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Berücksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungswärmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtwärmeleitfähigkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streukörper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu können, wird eine Näherungsmethode für die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollständigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell für kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur näherungsweisen Berechnung der Streueffizienzen für räumlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer Wärmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung können diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitfähigkeit bzw. die Wärmeleitfähigkeit auch bei hohen Temperaturen oberhalb von $1000^\mathrm{o}\mathrm{C}$ zuverlässig bestimmen zu können. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten Wärmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse für berührungsfreie Hochtemperaturmessungen gezeigt. N2 - The objective of the present thesis is a comprehensive numerical and experimental characterization of the heat transfer properties in thermal insulation materials made of ceramic fibers at high temperatures. At the same time, new concepts for further improvement of fibrous insulation materials are developed. In general, ceramic oxides appear semitransparent in the infrared range, meaning that a part of the thermal radiation is transmitted through a sample without being scattered or absorbed. However, in a dispersed medium containing fibers with diameters in the micrometer range a strong interaction with infrared radiation occurs. Since typical fibrous insulation materials of technical relevance show raw densities between $50 \mathrm{kg/m^3}$ and $700 \mathrm{kg/m^3}$ they could be considered as optically dense. The optimization of the insulation effect involves the maximization of the mass specific scattering coefficient in the wavelength range of substantial thermal radiation. Therefore, the heat transfer properties of hollow-fiber insulation materials are compared to conventional insulations made of solid fibers by means of a numerical study. This treatise concludes that thermal insulations made of hollow fibers can provide a significant reduction of heat losses in wide ranges of practical interest. In particular, by application of hollow fiber insulations the effective thermal conductivity could be lowered by a factor of two.\\ However, in connection with optimization problems of stratified scattering objects the application of the full Maxwell-scattering theory is a time consuming task. In order to locate reasonable parameter configurations in layered cylindrical media an enhanced version of the so-called anomalous diffraction approximation is presented. By comparison with the results of the exact Maxwell-scattering formulas it is shown that within the limit of moderate refractive indices the simplified theory delivers good agreement in a broad size parameter range. Even the extinction efficiency of randomly oriented stratified cylinders is reproduced astonishingly well.\\ Apart from numerical investigations the heat transfer properties of a commercial fibrous insulation material are characterized experimentally. Therefore, the optical transport parameters extinction and albedo are determined by established methods. With knowledge of the fiber diameter distribution the experimental results could be compared to the theoretical predictions of light scattering at infinite fibers. The verification of optimization measures, requires also an adequate experimental determination of thermal diffusivity or thermal conductivity, respectively. For this purpose the potential of measuring thermal diffusivity of heterogeneous materials in a temperature range above $1000^\mathrm{o}C$ by thermal wave analysis is investigated for the first time. By comparison with a coupled numerical heat transfer model and an established measurement method the feasibility of measuring thermal diffusivity at high temperatures by thermal wave analysis is demonstrated KW - Wärmeübertragung KW - Hochtemperatur-Wärmeisolation KW - high temperature thermal insulation materials KW - partizipierende Medien KW - Wärmetransport KW - keramische Fasern KW - light scattering and absorption KW - heat transfer KW - ceramic fibers KW - Keramikfaser KW - Faser KW - Hohlfaser KW - Hochtemperatur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157917 ER -