TY - THES A1 - Kramer, Lisa Sophie T1 - Charakterisierung des Einflusses von Estrogenrezeptoren auf mechanoresponsive Reporter T1 - Characterization of the influence of estrogen receptors according to mechanoresponsive reporter N2 - Osteoporose wird definiert als erworbene, generalisierte Skeletterkrankung, die durch eine verminderte Knochenfestigkeit und einen pathologischen Knochenverlust charakterisiert wird. Durch die Störung der Mikroarchitektur kommt es zu strukturellen und funktionellen Defiziten im Sinne von Fragilitätsfrakturen. Mechanische Stimulation erhält die Gewebemasse und stimuliert deren kontinuierliche Anpassung. Östrogene spielen bei der Entwicklung, dem Wachstum und der Regeneration des Knochens eine bedeutende Rolle und wirken über Bindung an die Östrogenrezeptoren ER und ER in bestimmten Zielgeweben. Östrogenrezeptoren sind unverändert sehr geeignete Targets für die Entwicklung von Medikamenten im Rahmen der Osteoporosetherapie wie z.B. die selektiven Östrogen-Rezeptor-Modulatoren (SERMs). Die molekulare Klärung der Einflüsse von ER und ER ist unverändert von großer klinischer Bedeutung. Die Herstellung stabiler Zelllinien mit Überexpression von Reportergenkonstrukten und Rezeptoren kann dabei hilfreich sein. In dieser Arbeit wurde eine stabile Zelllinie mit Überexpression von ERβ etabliert, die unterschiedliche Wirkung von ER und ER wurden analysiert und die Effekte von zyklischer Dehnung auf Reportergenexpression unter der Kontrolle von mechanosensitiven responsiven Elementen wurden charakterisiert. N2 - Osteoporosis is defined as an acquired, generalized skeletal disorder which is characterized by reduced bone stability and pathological bone loss. A disorder of the microarchitecture leads to structural and functional deficiencies in the form of fragility fractures. Mechanical strain sustains tissue and stimulates its continuous adaptation. Estrogen plays an important role in the development, growth and regeneration of bones and works by binding to the estrogen receptors ERα und ERβ in certain target tissues. Estrogen receptors continue to be significant targets in the development of pharmaceuticals for osteoporosis therapy as for example selective estrogen receptor modulators (SERMs). The clarification of the influence of ERα and ERβ on a molecular level continue to be of great clinical significance. The creation of stable cell lines with overexpression of reporter gene constructs and receptors can be helpful in this. In this thesis a stable cell line with overexpression of ERβ was established, different effects of ERα und ERβ were analyzed and the effects of mechanical strain on reporter gene constructs under controlled mechanosensitive response elements were characterized. KW - Östrogene KW - Mechanorezeptor KW - Osteoporose KW - Östrogenrezeptor KW - osteoporosis KW - Mechanotransduktion KW - mechanoresponsive Elemente KW - estrogen receptor KW - mechanotransduction KW - mechanoresponsive elements Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222709 ER - TY - JOUR A1 - Liedert, Astrid A1 - Nemitz, Claudia A1 - Haffner-Luntzer, Melanie A1 - Schick, Fabian A1 - Jakob, Franz A1 - Ignatius, Anita T1 - Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss JF - International Journal of Molecular Sciences N2 - In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss. We demonstrated that both pathways interact in the regulation of bone mass adaption in response to mechanical loading and that the activation of Wnt/β-catenin signaling considerably increased mechanically induced bone formation, whereas the effects of estrogen treatment strictly depended on the estrogen status in the mice. KW - bone remodeling KW - mechanotransduction KW - ER signaling KW - Wnt/β-catenin signaling KW - ovariectomy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285487 SN - 1422-0067 VL - 21 IS - 21 ER - TY - JOUR A1 - Müller-Deubert, Sigrid A1 - Seefried, Lothar A1 - Krug, Melanie A1 - Jakob, Franz A1 - Ebert, Regina T1 - Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells JF - Stem Cell Research N2 - Epidermal growth factors (EGFs) e.g. EGF, heparin-binding EGF and transforming growth factor alpha and their receptors e.g. EGFR and ErbB2 control proinflammatory signaling and modulate proliferation in bone marrow stromal cells (BMSC). Interleukin-6 and interleukin-8 are EGF targets and participate in the inflammatory phase of bone regeneration via non-canonical wnt signaling. BMSC differentiation is also influenced by mechanical strain-related activation of ERK1/2 and AP-1, but the role of EGFR signaling in mechanotransduction is unclear. We investigated the effects of EGFR signaling in telomerase-immortalized BMSC, transfected with a luciferase reporter, comprising a mechanoresponsive AP1 element, using ligands, neutralizing antibodies and EGFR inhibitors on mechanotransduction and we found that EGF via EGFR increased the response to mechanical strain. Results were confirmed by qPCR analysis of mechanoresponsive genes. EGF-responsive interleukin-6 and interleukin-8 were synergistically enhanced by EGF stimulation and mechanical strain. We show here in immortalized and primary BMSC that EGFR signaling enhances mechanotransduction, indicating that the EGF system is a mechanosensitizer in BMSC. Alterations in mechanosensitivity and -adaptation are contributors to age-related diseases like osteoporosis and the identification of a suitable mechanosensitizer could be beneficial. The role of the synergism of these signaling cascades in physiology and disease remains to be unraveled. KW - mechanotransduction KW - bone marrow stromal cells KW - epidermal growth factor KW - signaling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170247 VL - 24 ER - TY - THES A1 - Ebinger, Martin T1 - Histologie und Funktion der Kniegelenksinnervation der Maus T1 - Histology and Function of the Innervation of the Mouse Knee Joint N2 - Die Kniegelenksinnervation von 6 Mäusen wurde elektronenmikroskopisch untersucht. Der Mediale Artikuläre Nerv (MAN) enthielt durchschnittlich 75 Nervenfasern, 63 unmyelinisierte und 12 myelinisierte (Durchmesser 1 bis 8 µm, Maximum zwischen 2 und 5 µm). Der Posteriore Artikuläre Nerv (PAN) bestand durchschnittlich aus 195 Nervenfasern, 129 unmyelinisierte und 66 myelinisierte (Durchmesser zwischen 1 und 12 µm, Maximum bei 4 bis 5 µm). Diese Daten sprechen für eine weitgehende histologische Vergleichbarkeit der Kniegelenksinnervation bei Maus, Ratte und Katze. Lediglich die Anzahl der Nervenfasern ist bei der im Verhältnis kleineren Maus geringer. Spinalganglienzellen von 10 Mäusen wurden mittels hypoosmolarer Lösung gedehnt. Schwankungen der intrazellulären Kalzium-Konzentrationen und elektrophysiologische Veränderungen wurden dabei registriert (Calcium-Imaging und Patch-Clamp). Die primär sensorischen Neuronen, die nicht an der Kniegelenksinnervation beteiligt waren, konnten in schnell, langsam und nicht reagierende Subpopulationen unterteilt werden. Die Beobachtungen an den retrograd markierten Kniegelnksafferenzen erlaubten eine solche Differenzierung nicht. Die Reizung mit Capsaicin zeigte, dass es sich bei den mechanosensitiven Kniegelenksafferenzen selten um polymodale Nozizeptoren handelte. N2 - The innervation of the knee joint of 6 mice was studied with an electronic microscope. The medial articular nerve (MAN) contained an average of 75 nervefibres, 63 unmyelinated and 12 myelinated(diameter of 1 to 8 µm, peak at 2 and 5 µm). The posterior articular nerve (PAN) contained an average of 195 nervefibres, 129 unmyelinated und 66 myelinated (diameter of 1 to 12, peak at 4 to 5 µm). These data hint to a similarity of the knee joint innervation of cat, rat and mouse. Only the number of the nervefibres seems to differ according to the specie's size. The Dorsal Root Ganglia (DRG) of ten mice were stretched by exposure to a hypoosmotic solution. Changes in the concentrations of intracellular calcium and in electrophysiological properties were registred (calcium-imaging and patch-clamp). The primary sensory neurons, that did not take part in the knee joint innervation, could be divided in fast, slow and not responding groups. This differentiation was not feasible for the retrogradely labeled neurons innervating the knee joint. Stimulation with Capsaicin showed, that mechanosensitive primary sensory neurons of the knee joint were rarely polymodal nociceptors. KW - Maus KW - Knie KW - Innervation KW - Mechanotransduktion KW - calcium-imaging KW - Mouse KW - knee KW - innervation KW - mechanotransduction KW - calcium-imaging Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3745 ER - TY - JOUR A1 - Herrmann, Marietta A1 - Engelke, Klaus A1 - Ebert, Regina A1 - Müller-Deubert, Sigrid A1 - Rudert, Maximilian A1 - Ziouti, Fani A1 - Jundt, Franziska A1 - Felsenberg, Dieter A1 - Jakob, Franz T1 - Interactions between muscle and bone — Where physics meets biology JF - Biomolecules N2 - Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment. KW - muscle KW - bone KW - mechanosensing KW - mechanotransduction KW - myokines KW - osteokines adaptation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203399 SN - 2218-273X VL - 10 IS - 3 ER - TY - JOUR A1 - Scholz, Nicole A1 - Guan, Chonglin A1 - Nieberler, Matthias A1 - Grotmeyer, Alexander A1 - Maiellaro, Isabella A1 - Gao, Shiqiang A1 - Beck, Sebastian A1 - Pawlak, Matthias A1 - Sauer, Markus A1 - Asan, Esther A1 - Rothemund, Sven A1 - Winkler, Jana A1 - Prömel, Simone A1 - Nagel, Georg A1 - Langenhan, Tobias A1 - Kittel, Robert J T1 - Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons JF - eLife N2 - Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response. KW - Latrophilin KW - adhesion GPCR KW - dCIRL KW - sensory physiology KW - metabotropic signalling KW - mechanotransduction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170520 VL - 6 IS - e28360 ER - TY - JOUR A1 - Pereira, Ana Rita A1 - Lipphaus, Andreas A1 - Ergin, Mert A1 - Salehi, Sahar A1 - Gehweiler, Dominic A1 - Rudert, Maximilian A1 - Hansmann, Jan A1 - Herrmann, Marietta T1 - Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell−Extracellular Matrix Interactions JF - Materials N2 - In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies. KW - bone tissue engineering KW - human trabecular bone decellularization KW - in vitro modeling KW - shear stress KW - compressive load KW - fluid simulation KW - cell-matrix interaction KW - mechanotransduction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245012 SN - 1996-1944 VL - 14 IS - 16 ER - TY - JOUR A1 - Paudel, Rupesh A1 - Fusi, Lorenza A1 - Schmidt, Marc T1 - The MEK5/ERK5 pathway in health and disease JF - International Journal of Molecular Sciences N2 - The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway. KW - atherosclerosis KW - bone KW - cartilage KW - endothelium KW - extracellular-regulated kinase 5 KW - Krüppel-like factor KW - mechanotransduction KW - mitogen-activated protein kinase KW - stress signaling KW - tumor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261638 SN - 1422-0067 VL - 22 IS - 14 ER - TY - JOUR A1 - Mayer, Matthias A1 - Rabindranath, Raman A1 - Börner, Juliane A1 - Hörner, Eva A1 - Bentz, Alexander A1 - Salgado, Josefina A1 - Han, Hong A1 - Böse, Holger A1 - Probst, Jörn A1 - Shamonin, Mikhail A1 - Monkman, Gereth J. A1 - Schlunck, Günther T1 - Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata JF - PLOS ONE N2 - Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of alpha-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (approximate to 40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. KW - elastic magnetic-materials KW - smooth muscle actin KW - magnetorheological elastomers KW - adhesion KW - mechanotransduction KW - stiffness KW - tension KW - mechanics KW - hydrogels KW - behavior Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128246 SN - 1932-6203 VL - 8 IS - 10 ER -