TY - THES A1 - Roos, Marcel Philipp T1 - Suche nach Interaktionspartnern mit dem ATP-abhängigen Kaliumkanal der Niere, ROMK, durch "Yeast-Two-Hybrid-Screening" T1 - Finding proteins that interact with a Renal ATP-dependent Potassium Channel by "Yeast-Two-Hybrid-Screening" N2 - Protein-Protein-Interaktionen haben eine wesentliche Bedeutung bei der Regulierung verschiedenster Zellfunktionen. Sie spielen u.a. bei der Funktionssteuerung von Kanälen, Transportern und Ionenpumpen eine wesentliche Rolle. Ein PDZ-Motiv am C- terminalen Ende des ATP-abhängigen Kaliumkanals ROMK ließ mögliche Inter-aktionen mit zellulären und membran-assoziierten Proteinen erhoffen. Nach Durch-führung dreier „Yeast-Two-Hybrid“-Screens zur Identifizierung möglicher Interakt-ionspartner von ROMK kamen 17, von ihrer Funktion schon bekannte, aussichtsreiche Proteine, in die enge Auswahl. Nach weiterer Charakterisierung und Autoaktivierungs-tests blieben 13 Proteine zur weiteren Abklärung übrig. GST-Pulldown-Experimente und Immunfluoreszenz brachten weitere Aufschlüsse und Erkenntnisse zur Interaktion zwischen ROMK und seinen Partnern. Folgende Erkenntnisse konnten aus den Versuchen gewonnen werden: *) 174 positive Klone interagierten bei drei „Yeast-Two-Hybrid“-Screens mit dem zytoplasmatischen Teil von ROMK. *) der zytoplasmatische Teil des ATP-abhängigen Kaliumkanals der Niere, ROMK, ist an Protein- Protein- Interaktionen beteiligt. *) Proteine des Aktin-Zytoskeletts und Tyrosinkinase-assoziierte Proteine binden an den zytoplasmatisch Teil von ROMK. Daher könnten beide in Punkt 1.5.4. erwähnten Theorien der Aktivitätsänderung ROMKs durch a) Stimulierung ruhender Kanäle bzw. b) Einbau von in Vesikel gespeicherten Kanälen in die Membran vertreten werden. *) Shank3a, Calponin2, NHERF2, NUMB2 und Antiquitin1 binden an den C-terminalen Teil von ROMK in den GST-Pull-Down-Experimenten. *) Shank3a und ArgBP2 verändern das Verteilungsmuster von ROMK in der Zelle. *) Shank3a scheint für eine Interaktion mit ROMK am bedeutungsvollsten zu sein. Hypothetische Modelle und Gedankenspiele über den möglichen Einfluss der Interaktionspartner auf ROMK wurden in der Diskussion erstellt und näher erläutert. Es ist davon auszugehen, dass einige dieser Proteine, speziell diese, die mit Tyrosinkinase und dem Aktin-Zytokeletts assoziiert sind, auf ROMK Einfluss nehmen. Weitere Studien werden hoffentlich bald Aufschlüsse über Aktivitätsänderungen des ATP-ab-hängigen K+-Kanal, ROMK, offenbaren. KW - Kaliumkanal KW - Niere KW - Protein-Protein-Interaktionen KW - PDZ-Domäne KW - Yeast-Two-Hybrid-Screening KW - Potassium Channel KW - Kidney KW - Protein-protein-interaction KW - PDZ-Domain KW - Yeast-Two-Hybrid-Screening Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11424 ER - TY - THES A1 - Christenn, Marcus T1 - Charakterisierung von Somatostatinrezeptor-Subtyp 4 interagierenden Proteinen in der Ratte (Rattus norvegicus) T1 - Characterisation of somatostatin receptor subtype 4 interacting proteins in the rat (Rattus norvegicus) N2 - Somatostatin ist ein regulatorisches Peptid, das eine Vielzahl von biologischen Prozessen innerhalb des Körpers beeinflußt. Die Wirkung von Somatostatin wird auf zellulärer Ebene über eine Familie von fünf G-Protein-gekoppelten Rezeptoren vermittelt, die entweder in G Protein-abhängiger Weise oder vermutlich auch über andere interagierende intrazelluläre Proteine auf nachgeschaltete Signaltransduktionswege wirken. Der Somatostatinrezeptor Subtyp 4 (SSTR4) wird hauptsächlich im Gehirn exprimiert und wirkt dort inhibierend auf die exzitatorische Signalweiterleitung. Es sind aber auch stimulierende Effekte des SSTR4 bekannt. Um das subtypspezifische Signalverhalten des SSTR4 weiter zu untersuchen, wurden im Rahmen dieser Arbeit Proteine gesucht, die intrazellulär mit dem SSTR4 interagieren und so seine physiologischen Effekte beeinflussen. In einem ersten Ansatz konnten drei mögli-che Interaktionspartner mit Hilfe des Hefe-Zwei-Hybrid-Systems identifiziert werden, die aber in nachfolgenden Untersuchungen als unpezifisch eingestuft wurden. Mit Hilfe einer Affinitätschromatografie wurden dann zwei Proteine identifiziert, die spezifisch mit dem SSTR4 interagieren. Sowohl PSD-95 als auch PSD-93 (Postsynaptic density protein of 95 kDa bzw. 93kDa) wurden mit einem immobilisierten Peptid präzipitiert, das die neun C-terminalen Aminosäuren des SSTR4 enthält. Die Interaktion des SSTR4 mit PSD 95 wurde im Weiteren näher charakterisiert. In einem Bindungsexperiment mit rekombinaten Proteinen konnte gezeigt werden, dass die Interaktion durch die 1. und 2. PDZ-Domäne von PSD-95 vermittelt wird. In humanen embryonalen Nieren-Zellen (HEK293), die den SSTR4 stabil exprimieren, konnte PSD-95 mit dem Rezeptor koimmunpräzipitiert werden. Nach Koexpression von PSD-95 und SSTR4 findet man eine partielle Kolokalisierung beider Proteine an der Zellmembran, wobei aber der Großteil des PSD-95 weiterhin eine diffuse zytoplasmatische Verteilung zeigt. Die Interaktion wurde in vivo sowohl immunhistochemisch in kultivierten Hippocampus-Neuronen als auch durch Koimmunpräzipitation beider Proteine aus Rattengehirn-Lysaten nachgewiesen. Die Interaktion von PSD-95 mit dem SSTR4 beeinflußt weder die Agonisten-induzierte Internalisierung des Rezeptors in HEK293-Zellen, noch die Kopplung des Rezeptors an einen G-Protein-gekoppelten einwärtsgleichrichtenden Kaliumkanal in Oozyten des afrikanischen Krallenfrosches Xenopus laevis. Durch die Interaktion mit PSD-95 wird der SSTR4 in physikalische Nähe zu bestimmten Zielproteinen gebracht, über die nachfolgend die Somatostatineffekte weitervermittelt werden. So ermöglicht die Interaktion vermutlich eine Integration des SSTR4 in den postsynaptischen Komplex aus PSD-95 und Glutamatrezeptoren, wo der SSTR4 die bereits beschrieben regulatorischen Effekte auf die Glutamat-vermittelte exzitatorische Signaltransduktion ausüben kann. N2 - Somatostatin is a regulatory peptid, which affects a multiplicity of biological processes within the body. The effects of Somatostatin are mediated by a family of five G-protein-coupled receptors, which act on several downstream signaltransduction pathways either in a G-protein-dependent way or probably in a G-protein-independent manner via intracellular interacting proteins. The somatostatin receptor subtype 4 (SSTR4) is mainly expressed in brain, where it inhibits the excitatory neurotransmission. In addition, excitatory effects of SSTR4 have also been published. In order to examine the subtype specific signalling of SSTR4, I tried to identify intracellular proteins which interact directly with the SSTR4 and affect its physiological effects. Using the yeast two-hybrid system I identified three possible interaction partners for SSTR4, which were however classified as non-specific in subsequent experiments. In a second approach two proteins which interact with SSTR4 could be identified by affinity-chromatography. Both proteins PSD-95 and PSD-93 (Postsynaptic density protein of 95 kDa and 93kDa) were precipitated specifically with an immobilized peptid that contains the nine C-terminal amino acids of SSTR4. The interaction of the SSTR4 with PSD-95 was further characterized. In a binding experiment with recombinant proteins I could show that the interaction is mediated by the 1st and 2nd PDZ-domain of PSD-95. In human embryonic kidney cells (HEK293) which stably express SSTR4, PSD-95 could be coprecipitated with the receptor. After coexpression of PSD-95 and SSTR4 both proteins are partially colocalized at the plasma membrane. The majority of the PSD-95 however shows a diffuse cytoplasmic distribution. The in vivo interaction was proven by immunohistochemistry on cultivated hippocampal neurons and by coimmunoprecipitation of both proteins from rat brain lysates. The interaction of PSD-95 with SSTR4 affected neither the agonist induced internalisation of the receptor in HEK293 cells, nor the coupling of the receptor to a G-protein-coupled inwardly-rectifying potassium channel in oocytes obtained from the african clawed frog Xenopus laevis. By the interaction with PSD-95, SSTR4 is brought into physical proximity to certain target proteins which mediate the effects of somatostatin. Thus the interaction probably allows an integration of SSTR4 into the postsynaptic complex of PSD-95 and glutamergic receptors, where SSTR4 could regulate the glutamat-mediated excitatory signaltransduction. KW - Ratte KW - Somatostatin KW - G-Proteine KW - Rezeptor KW - G-Protein-gekoppelter Rezeptor KW - Somatostatinrezeptor Subtyp 4 KW - interagierende Proteine KW - PDZ-Domäne KW - PSD-95 KW - G-protein-coupled receptor KW - somatostatin receptor subtype 4 KW - interacting proteins KW - PDZ-domain KW - PSD-95 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14253 ER - TY - THES A1 - Kerl, Hans Ulrich T1 - Charakterisierung interagierender Proteine des renalen ATP-abhängigen Kaliumkanals ROMK T1 - Characterisation of interacting proteins of the renal ATP- dependent potassium channel ROMK N2 - ROMK ist ein einwärts-gleichrichtender Kaliumkanal, der hauptsächlich in der Niere exprimiert wird. Er wird dabei vor allem in der apikalen Membran des aufsteigenden Astes der Henleschen Schleife, dem distalen Tubulus und dem Sammelrohr exprimiert. Die Hauptaufgaben von ROMK bestehen in der Rezirkulation von Kalium im dicken aufsteigenden Ast der Henleschen Schleife und der Kaliumsekretion im kortikalen Sammelrohr. ROMK wurde kloniert und in Oozyten exprimiert. Die Expression sowie Struktur- und Funktionsstudien haben viele Informationen über die Biophysik und die Regulation dieses Kanals gebracht. Dennoch ist bisher wenig über die für den Transport zur apikalen Membran von Epithelzellen verantwortlichen Mechanismen des Kanals bekannt. Der C- Terminus von ROMK ist aufgrund einer sehr hohen Homologie zu einem PDZ-Motiv ein möglicher Teilnehmer an Protein- Protein Interaktionen. In einem Hefe-zwei-Hybrid Screen wurden verschiedene mögliche Interaktionspartner gefunden. Im Rahmen dieser Arbeit wurde versucht, die Interaktion zwischen einigen im Hefe-System gefundenen Proteinen und dem Kanalprotein zu identifizieren, verifizieren und charakterisieren. In dem in vitro HIS- Pulldown Assay konnten die im Hefe-zwei-Hybrid System gefundenen Interaktionen zwischen ROMK und HEF1, Antiquitin1 sowie Calponin2 bestätigt werden. Ebenso war es möglich, durch Kolokalisationsstudien mittels indirekter Immunfluoreszenz weitere Anhaltspunkte für eine mögliche Interaktion von ROMK und Antiquitin1, Calponin2, Shank und ArgBP2 zu liefern. Diese Ergebnisse legen die Vermutung nahe, dass die gefundenen Interaktionspartner zum einen für den Einbau und die Stabilität von ROMK in der Membran zuständig sein und zum anderen durch Verbindung zu möglichen Signalkomplexen, z.B. durch ArgBP2, ein Rolle in der Aktivitätssteuerung von ROMK spielen könnten. KW - Kaliumkanal KW - Niere KW - Protein-Protein-Interaktion KW - PDZ-Domäne KW - GST KW - HIS KW - Immunfluoreszenz KW - Potassium Channel KW - Kidney KW - Protein-Protein Interaction KW - PDZ-Domain KW - GST KW - HIS KW - Immunfluorescence Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13506 ER -