TY - JOUR A1 - Hamann, Catharina S. A1 - Bankmann, Julian A1 - Mora Maza, Hanna A1 - Kornhuber, Johannes A1 - Zoicas, Iulia A1 - Schmitt-Böhrer, Angelika T1 - Social fear affects limbic system neuronal activity and gene expression JF - International Journal of Molecular Sciences N2 - Social anxiety disorder (SAD) is a highly prevalent and comorbid anxiety disorder with rather unclear underlying mechanisms. Here, we aimed to characterize neurobiological changes occurring in mice expressing symptoms of social fear and to identify possible therapeutic targets for SAD. Social fear was induced via social fear conditioning (SFC), a validated animal model of SAD. We assessed the expression levels of the immediate early genes (IEGs) cFos, Fosl2 and Arc as markers of neuronal activity and the expression levels of several genes of the GABAergic, serotoninergic, oxytocinergic, vasopressinergic and neuropeptide Y (NPY)-ergic systems in brain regions involved in social behavior or fear-related behavior in SFC+ and SFC− mice 2 h after exposure to a conspecific. SFC+ mice showed a decreased number and density of cFos-positive cells and decreased expression levels of IEGs in the dorsal hippocampus. SFC+ mice also showed alterations in the expression of NPY and serotonin system-related genes in the paraventricular nucleus of the hypothalamus, basolateral amygdala, septum and dorsal raphe nucleus, but not in the dorsal hippocampus. Our results describe neuronal alterations occurring during the expression of social fear and identify the NPY and serotonergic systems as possible targets in the treatment of SAD. KW - social anxiety KW - fear expression KW - social avoidance KW - gene expression KW - Npy KW - Npyr1 KW - Npyr2 KW - Htr1a KW - Htr2a KW - Htr2c Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284274 SN - 1422-0067 VL - 23 IS - 15 ER - TY - JOUR A1 - Kiser, Dominik P. A1 - Gromer, Daniel A1 - Pauli, Paul A1 - Hilger, Kirsten T1 - A virtual reality social conditioned place preference paradigm for humans: Does trait social anxiety affect approach and avoidance of virtual agents? JF - Frontiers in Virtual Reality N2 - Approach and avoidance of positive and negative social cues are fundamental to prevent isolation and ensure survival. High trait social anxiety is characterized by an avoidance of social situations and extensive avoidance is a risk factor for the development of social anxiety disorder (SAD). Therefore, experimental methods to assess social avoidance behavior in humans are essential. The social conditioned place preference (SCPP) paradigm is a well-established experimental paradigm in animal research that is used to objectively investigate social approach–avoidance mechanisms. We retranslated this paradigm for human research using virtual reality. To this end, 58 healthy adults were exposed to either a happy- or angry-looking virtual agent in a specific room, and the effects of this encounter on dwell time as well as evaluation of this room in a later test without an agent were examined. We did not observe a general SCPP effect on dwell time or ratings but discovered a moderation by trait social anxiety, in which participants with higher trait social anxiety spent less time in the room in which the angry agent was present before, suggesting that higher levels of trait social anxiety foster conditioned social avoidance. However, further studies are needed to verify this observation and substantiate an association with social anxiety disorder. We discussed the strengths, limitations, and technical implications of our paradigm for future investigations to more comprehensively understand the mechanisms involved in social anxiety and facilitate the development of new personalized treatment approaches by using virtual reality. KW - retranslational research KW - conditioned place preference KW - approach–avoidance KW - social anxiety KW - virtual reality KW - personality traits KW - individual differences Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293564 SN - 2673-4192 VL - 3 ER -