TY - THES A1 - Mayer, Christine Rita T1 - Zyklisches AMP kompensiert morphologische und funktionelle Defekte in isolierten Smn-defizienten Motoneuronen T1 - Cyclic AMP compensates morphological and functional defects in isolated Smn-deficient motoneurons N2 - Die proximale spinale Muskelatrophie (SMA) ist eine autosomal rezessive Erb-krankheit, welche durch fortschreitende Muskelatrophie mit Betonung der pro-ximalen Extremitäten, sowie zunehmende motorische Lähmungen charakterisiert wird. Bedingt wird diese neurodegenerative Erkrankung durch Mutation bzw. Deletion des SMN1-Gens auf Chromosom 5q13. Dies führt zu reduzierten Mengen des ubiquitär exprimierten SMN-Proteins, da der Verlust des SMN1-Gens nicht durch das noch verbleibende SMN2-Gen kompensiert werden kann. Die SMN-Promotor-Region enthält ein CRE II bindendes Element, welches Effekte von zyklischem Adenosinmonophosphat (cAMP) vermittelt und so die SMN-Transkription in untersuchten Zellen stimuliert. Ausgehend von diesem Befund stellte sich die Frage, ob cAMP dem Mangel an volllängen SMN bei der SMA entgegen wirkt. Daher wurden für diese Dissertation neurosphärenbildende kortikale Vorläuferzellen und primär kultivierte Motoneuronen von Smn+/+; SMN2- und Smn–/–;SMN2-Mausembryonen untersucht, um zu klären, ob die cAMP-Behandlung der Zellen zu einer Hochregulierung des SMN2-Transkripts führt, und durch die resultierende Erhöhung des SMN-Proteingehalts morphologische und funktionelle Defekte kompensiert werden. Die Untersuchung zeigte eine signifikante Zunahme des SMN2-Transkriptgehalts in Anwesenheit von cAMP. Dadurch kam es zu einem Anstieg der SMN-Proteinmenge im Soma, Axon und Wachstumskegel von Smn–/–;SMN2-Motoneuronen. Die Verteilungs-störung des SMN-Interaktionspartners hnRNP R mit fehlender kontrolltypischer Anreicherung im distalen Axon und Wachstumskegel von Smn–/–;SMN2-Motoneuronen wurde ebenfalls durch cAMP kompensiert. Smn-defiziente Mo-toneurone zeigten im Vergleich zu Kontrollzellen kleinere Wachstumskegel sowie ein Defizit an β-Aktin im distalen Axon. Zudem fehlte in Smn–/–;SMN2-Motoneuronen die bei Kontrollen ausgeprägte Zusammenlagerung von N-Typ spezifischen Ca2+-Kanälen in der Präsynapse, die nach Kontakt mit der β2-Kette des endplattenspezifischen Laminin-221 spontan öffnen und so einen in-trazellulären Kalziumanstieg bewirken, wodurch es zu Erregbarkeitsstörungen und Axonelongationsdefekten bei Smn-defizienten Motoneuronen kommt. Die Behandlung der Smn-defizienten Motoneuronen mit cAMP führte zur Vergrößerung der Wachstumskegelfläche und zu einer im Verlauf des Axons zunehmenden Anfärbung mit β-Aktin. Außerdem kam es zu einer Erhöhung der Menge an Cav2.2-Kanalprotein in den Wachstumskegeln Smn-defizienter Motoneurone, was mit einer erhöhten Erregbarkeit korrelierte und zu einer Normalisierung der Axonlänge von Smn–/–;SMN2-Motoneuronen auf Laminin-221 führte. Die Ergebnisse dieser Arbeit lassen die Vermutung zu, dass Smn-defiziente Motoneurone in vivo Defekte im präsynaptischen Bereich der Motorendplatte aufweisen. In Zukunft können mit dem beschriebenen in vitro Assay weitere Substanzen, welche die SMN2-Traskription stimulieren, auf ihr kompensatorisches Potential getestet werden. N2 - Proximal autosomal recessive spinal muscular atrophy (SMA) is caused by mutation or deletion of the SMN1-gene on chromosome 5q13. The SMN promotor region contains a CRE II binding element, which mediates effects of cyclic adenosine monophosphate and stimulates the SMN transcription in examined cells. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced ß-actin protein levels in distal axons. In this study I examined primary cultured motoneurons from Smn+/+;SMN2- and Smn-/-;SMN2-mice embryos. The examination could show a significant increase of the SMN2 transcript by treating the cells with cAMP. The Smn protein level increases in the soma, axonal department and growth cones of Smn-deficient motoneurons which were treated with cAMP in cell culture. I could also show that Smn–deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones and that treating with cAMP compensate these defects. Growth cone size, axonal length, hnRNP R protein levels and ß-actin protein levels in distal axons being normalized by cAMP treating of the Smn-/-;SMN2-motoneurons. Other substances, which stimulate the SMN2 transcription, can be tested in the future with the in this study established in vitro assay. KW - cAMP KW - Spinale Muskelatrophie KW - Motoneuron KW - Actin KW - N-Typ Kalziumkanäle KW - SMN KW - cAMP KW - spinal muscular atrophy KW - N-type calcium channel KW - SMN KW - beta-actin Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46457 ER - TY - THES A1 - Saal, Lena T1 - Whole transcriptome profiling of compartmentalized motoneurons T1 - Globale Transkriptomanalyse von kompartimentierten Motoneuronen N2 - Spinal muscular atrophy and amyotrophic lateral sclerosis are the two most common devastating motoneuron diseases. The mechanisms leading to motoneuron degeneration are not resolved so far, although different hypotheses have been built on existing data. One possible mechanism is disturbed axonal transport of RNAs in the affected motoneurons. The underlying question of this study was therefore to characterize changes in transcript levels of distinct RNAs in cell culture models of spinal muscular atrophy and amyotrophic lateral sclerosis, especially in the axonal compartment of primary motoneurons. To investigate this in detail we first established compartmentalized cultures of Primary mouse motoneurons. Subsequently, total RNA of both compartments was extracted separately and either linearly amplified and subjected to microarray profiling or whole transcriptome amplification followed by RNA-Sequencing was performed. To make the whole transcriptome amplification method suitable for compartmentalized cultures, we adapted a double-random priming strategy. First, we applied this method for initial optimization onto serial dilutions of spinal cord RNA and later on to the compartmentalized motoneurons. Analysis of the data obtained from wildtype cultures already revealed interesting results. First, the RNA composition of axons turned out to be highly similar to the somatodendritic compartment. Second, axons seem to be particularly enriched for transcripts related to protein synthesis and energy production. In a next step we repeated the experiments by using knockdown cultures. The proteins depleted hereby are Smn, Tdp-43 and hnRNP R. Another experiment was performed by knocking down the non-coding RNA 7SK, the main interacting RNA of hnRNP R. Depletion of Smn led to a vast number of deregulated transcripts in the axonal and somatodendritic compartment. Transcripts downregulated in the axons upon Smn depletion were especially enriched for GOterms related to RNA processing and encode proteins located in neuron projections including axons and growth cones. Strinkingly, among the upregulated transcripts in the somatodendritic compartment we mainly found MHC class I transcripts suggesting a potential neuroprotective role. In contrast, although knockdown of Tdp-43 also revealed a large number of downregulated transcripts in the axonal compartment, these transcripts were mainly associated with functions in transcriptional regulation and RNA splicing. For the hnRNP R knockdown our results were again different. Here, we observed downregulated transcripts in the axonal compartment mainly associated with regulation of synaptic transmission and nerve impulses. Interestingly, a comparison between deregulated transcripts in the axonal compartment of both hnRNP R and 7SK knockdown presented a significant overlap of several transcripts suggesting some common mechanism for both knockdowns. Thus, our data indicate that a loss of disease-associated proteins involved in axonal RNA transport causes distinct transcriptome alterations in motor axons. N2 - Spinale Muskelatrophie und Amyotrophe Lateralsklerose zählen zu den beiden häufigsten und schwersten Motoneuronerkrankungen. Der zugrunde liegende Mechanismus beider Krankheiten ist bis heute nicht geklärt, dennoch werden verschiedene Theorien diskutiert. Ein möglicher Grund ist ein gestörter axonaler Transport von RNAs in den betroffenen Motoneuronen. Daraus folgernd ergab sich die zugrunde liegende Frage dieser Arbeit, ob Veränderungen in den Transkriptleveln bestimmter RNAs unter krankheitsähnlichen Bedingungen vor allem im axonalen Kompartiment von primären Maus-Motoneuronen beobachtet werden können. Um die Fragestellung genauer zu untersuchen, etablierten wir zuerst kompartimentierte Kulturen von primären Motoneuronen. Darauffolgend haben wir die totale RNA aus beiden Kompartimenten separat extrahiert und entweder diese linear amplifiziert und zur Microarrayanalyse gegeben oder wir führten eine Amplifikation des kompletten Transkriptoms mit anschließender RNA-Sequenzierung durch. Um die Amplifikation des kompletten Transkriptoms auch für die kompartimentierten Kulturen geeignet zu machen, verwendeten wir eine doublerandom priming Strategie und haben diese entsprechend angepasst. Zuerst wendeten wir die Methode an Serienverdünnungen von RNA aus dem Rückenmark an, um die Methode zu optimisieren. Später benutzten wir die Methode ebenfalls für kompartimentierte Motoneurone. Schon die Analyse der Wildtyp-Daten lieferte interessante Ergebnisse. Erstens, die Zusammensetzung der RNA in Axonen war höchst ähnlich zu der im somatodendritischen Kompartiment. Zweitens, in Axonen scheinen speziell Transkripte angereichert zu sein, welche mit Proteinsynthese und Energieproduktion in Verbindung stehen. In einem nächsten Schritt wurden dann die Experimente unter Verwendung von Knockdown-Kulturen wiederholt. Die Proteine, die dabei vermindert wurden waren Smn, Tdp-43 und hnRNP R. Ein weiteres Experiment wurde durchgeführt indem die nicht-codierende RNA 7SK verringert wurde. Die Depletion von Smn führte zu einer hohen Anzahl an deregulierten Transkripten sowohl im axonalen, als auch im somatodendritischen Kompartiment. Transkripte, die im axonalen Kompartiment nach Smn Depletion verringert waren, waren überwiegend für GOTerms angereichert, welche mit RNA Prozessierung in Verbindung stehen oder welche Proteine codieren, die in neuronalen Fortsätzen, einschließlich Axon und Wachstumskegel lokalisiert sind. Bemerkenswert ist, dass wir unter den hochregulierten Transkripten im somatodendritischen Kompartiment überwiegend MHC Klasse I Transkripte gefunden haben. Dies könnte eine mögliche neuroprotektive Rolle dieser Transkripte annehmen lassen. Im Gegensatz zu den Ergebnissen beim Smn Knockdown fanden wir beim Tdp-43 Knockdown ebenfalls eine große Anzahl an herunterregulierten Transkripten im axonalen Kompartiment, diese sind allerdings überwiegend mit Funktionen in der Transkriptionsregulierung und beim RNA Splicing assoziiert. Die Ergebnisse des hnRNP R Knockdowns waren ebenfalls unterschiedlich. Bei diesem fanden wir die herunteregulierten Transkripte im axonalen Kompartiment überwiegend mit einer Regulierung der synaptischen Übertragung sowie mit Nervenimpulsen assoziiert. Interessanterweise zeigte ein Vergleich der deregulierten Transkripte sowohl im axonalen Kompartiment vom hnRNP R Knockdown, als auch vom 7SK Knockdown eine signifikante Übereinstimmung mehrerer Transkripte. Dies lässt einen teilweise gemeinsamen Mechanismus für beide Genprodukte vermuten. Somit deuten unsere Daten darauf hin, dass ein Verlust von krankheitsassoziierten Proteinen, die eine Rolle beim axonalen RNA-Transport spielen, zu verschiedenen Transkriptomveränderungen in Axonen von Motoneuronen führt. KW - Axon KW - Motoneuron KW - Spinale Muskelatrophie KW - amyotrophic lateral sclerosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140006 ER - TY - THES A1 - Karle, Kathrin Nora T1 - Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum T1 - Studies on the pathomechanism of spinal muscular atrophy (SMA): functions of the SMN protein for axon growth N2 - Die proximale spinale Muskelatrophie (SMA) stellt eine der häufigsten erblichen Ursachen für den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschwäche und in schweren Fällen auch an sensiblen Ausfällen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquitär exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist für alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus für die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die Überlebensraten der Smn–/–;SMN2-Motoneurone 14 Tage alter Mausembryonen gegenüber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonlängen der Smn-defizienten Motoneurone waren gegenüber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeinträchtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn–/–;SMN2 Motoneuronen eine signifikante Verminderung der Fläche gegenüber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukleären Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn–/–;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsstörung fand sich für das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch für die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Veränderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn–/–;SMN2-Mäusen war die Neuritenlänge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verkürzt und die Fläche der Wachstumskegel hochsignifikant verringert. Im Smn–/–;SMN2 Mausmodell für eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgeprägte, jedoch gleichartige Veränderungen, was auf einen ähnlichen Pathomechanismus in beiden Zelltypen hinweist. N2 - Proximal spinal muscular atrophy (SMA) represents one of the most common hereditary diseases leading to death in childhood. The patients suffer from symmetric and slowly progressive muscle weakness and atrophy as well as sensory defects in severe cases. The neurodegenerative autosomal recessive disease is caused by deletion or mutations of the survival motor neuron 1 (SMN1) gene on chromosome 5q13. The SMN protein is expressed ubiquitously and it is found associated in a multiprotein complex, termed SMN complex, in all tissues under observation. It coordinates spliceosomal complex assembly. The function of these complexes is essential for all cell types. Hence, the question is which pathomechanism causes SMA. Here, we demonstrate that the survival rate of Smn–/–;SMN2 motor neurons of 14-day-old mouse embryos was not reduced in comparison to Smn+/+;SMN2 motor neurons (controls), whereas morphological differences were apparent at the same developmental stage of the cells. Axon length in Smn-deficient motor neurons was significantly reduced vs. control motor neurons. Dendritic outgrowth was not affected. Investigation of the growth cone area of Smn–/–;SMN2 motor neurons showed a significant reduction vs. controls. Additionally, defects in the cytoskeletal structure were detected. In motor neurons of control animals, accumulation of beta-actin was found in the perinuclear compartments, and more pronounced in the growth cones, with an increase of beta-actin accumulation along the axon. In Smn–/–;SMN2 motor neurons, no beta-actin accumulation was detected in distal parts of the axon or in the growth cones. The same imbalance was found for the distribution of the SMN interacting protein hnRNP R (heterogenous nuclear ribonucleoprotein R), and, as shown by others, also for the distribution of beta-actin mRNA, which specifically binds to hnRNP R. In the same manner, alterations of the sensory neurons from dorsal root ganglia of 14-day-old mouse embryos were examined. Neurite outgrowth length of Smn–/–;SMN2 sensory neurons was reduced to a small extent, but significantly, in comparison to control neurons, and reduction of the growth cone area was highly significant. In the Smn–/–;SMN2 mouse model resembling a severe type of SMA, alterations in sensory neurons were less prominent than defects in motor neurons, but of the same kind, pointing to a similar pathomechanism in both cell types. KW - Spinale Muskelatrophie KW - Actin KW - Motoneuron KW - SMN KW - hnRNP R KW - SMA KW - actin KW - motor neuron KW - SMN KW - hnRNP R Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26097 ER - TY - THES A1 - Wetzel, Andrea T1 - The role of TrkB and NaV1.9 in activity-dependent axon growth in motoneurons T1 - Die Rolle von TrkB und NaV1.9 in aktivitätsabhängigem Axonwachstum von Motoneuronen N2 - Während der Entwicklung des Nervensystems lassen sich bei Motoneuronen aktivitätsabhängige Kalziumströme eobachten, die das Axonwachstum regulieren. Diese Form der neuronalen Spontanaktivität sowie das Auswachsen von Axonen sind bei Motoneuronen, die aus Tiermodellen der Spinalen Muskelatrophie isoliert werden, gestört. Experimente aus unserer Arbeitsgruppe haben gezeigt, dass spontane Erregbarkeit und aktivitätsabhängiges Axonwachstum von kultivierten Motoneuronen auch unter Verwendung von Toxinen beeinträchtigt sind, welche die Aktivität von spannungsabhängigen Natriumkanälen blockieren. In diesen Versuchen war die Wirkung von Saxitoxin effizienter als die Wirkung von Tetrodotoxin. Wir identifizierten den Saxitoxin-sensitiven/Tetrodotoxin-insensitiven spannungsabhängigen Natriumkanal NaV1.9 als Trigger für das Öffnen spannungsabhängiger Kalziumkanäle. Die Expression von NaV1.9 in Motoneuronen konnte über quantitative RT-PCR nachgewiesen werden und antikörperfärbungen offenbarten eine Anreicherung des Kanals im axonalen Wachstumskegel sowie an Ranvier'schen Schnürringen von isolierten Nervenfasern wildtypischer Mäuse. Motoneurone von NaV1.9 knock-out Mäusen zeigen reduzierte Spontanaktivität und eine Reduktion des Axonwachstums, welche durch NaV1.9 Überexpression normalisiert werden kann. In Motoneuronen von Smn-defizienten Mäusen konnte keine Abweichung der NaV1.9 Proteinverteilung nachgewiesen werden. Kürzlich wurden Patienten identifiziert, die eine missense-Mutation im NaV1.9 kodierenden SCN11A Gen tragen. Diese Patienten können keinerlei Schmerz empfinden und leiden zudem an Muskelschwäche in Kombination mit einer verzögerten motorischen Entwicklung. Im Rahmen dieser Doktorarbeit konnten molekularbiologische Untersuchungen an Mäusen, welche die Mutation im orthologen Scn11a Gen tragen, zur Aufklärung des Krankheitsmechanismus beitragen. Die Kooperationsstudie zeigte, dass eine gesteigerte Funktion von NaV1.9 diese spezifische Kanalerkrankung auslöst, was die Wichtigkeit von NaV1.9 in menschlichen Motoneuronen unterstreicht. Eine frühere Studie beschrieb an hippocampalen Neuronen, dass die Rezeptortyrosinkinase tropomyosin receptor kinase B (TrkB) den NaV1.9 Kanal öffnen kann. Im Wachstumskegel von Motoneuronen ist TrkB nachweisbar und folglich in räumlicher Nähe zu NaV1.9 zu finden. Um zu prüfen, ob TrkB in die spontane Erregbarkeit von Motoneuronen involviert ist, wurden TrkB knock-out Mäuse untersucht. Isolierte Motoneurone von TrkB knock-out Mäusen weisen eine Reduktion der Spontanaktivität und eine Verringerung des Axonwachstums auf. Ob TrkB und NaV1.9 hierbei funktionell gekoppelt sind, ist Gegenstand künftiger Forschung. N2 - During development of the nervous system, spontaneous Ca2+ transients are observed that regulate the axon growth of motoneurons. This form of spontaneous neuronal activity is reduced in motoneurons from a mouse model of spinal muscular atrophy and this defect correlates with reduced axon elongation. Experiments from our group demonstrated that voltage-gated sodium channel pore blockers decrease spontaneous neuronal activity and axon growth in cultured motoneurons, too. In these experiments, saxitoxin was more potent than tetrodotoxin. We identified the saxitoxin-sensitive/tetrodotoxin-insensitive voltage-gated sodium channel NaV1.9 as trigger for the opening of voltage-gated calcium channels. In motoneurons, expression of NaV1.9 was verified via quantitative RT-PCR. Immuno labelling experiments revealed enrichment of the channel in axonal growth cones and at the nodes of Ranvier of isolated nerve fibres from wild type mice. Motoneurons from NaV1.9 knock-out mice show decreased spontaneous activity and reduced axonal elongation. This growth defect can be rescued by NaV1.9 overexpression. In motoneurons from Smn-deficient mice, NaV1.9 distribution appeared to be normal. Recently, patients carrying a missense mutation in the NaV1.9-encoding gene SCN11A were identified. These patients are not able to feel pain and suffer from muscular weakness and a delayed motor development. Molecular biological work during this dissertation supported the analysis of this mutation in a mouse model carrying the orthologous alteration in the Scn11a locus. The cooperation study confirmed that a gain-of-function mechanism underlies the NaV1.9-mediated channelopathy, thus suggesting a functional role of NaV1.9 in human motoneurons. An earlier study showed in hippocampal neurons that the receptor tyrosine kinase tropomyosin receptor kinase B (TrkB) can open the NaV1.9 channel. TrkB is localized in growth cones of motoneurons and subsequently found in close proximity to NaV1.9. In order to proof whether TrkB is involved in spontaneous excitability in motoneurons, TrkB knock-out mice were analysed. Isolated motoneurons from TrkB knock-out mice show a reduced spontaneous activity and axon elongation. It remains to be studied whether TrkB and NaV1.9 are functionally connected. KW - Motoneuron KW - Neurotrophic factors KW - NaV1.9 KW - motoneuron KW - spontaneous neuronal activity KW - Axon KW - Wachstum KW - Natriumkanal KW - TrkB Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-92877 ER - TY - THES A1 - Sivadasan, Rajeeve T1 - The role of RNA binding proteins in motoneuron diseases T1 - Die Rolle von RNA-bindenden Proteinen in Motoneuronerkrankungen N2 - Motoneuron diseases form a heterogeneous group of pathologies characterized by the progressive degeneration of motoneurons. More and more genetic factors associated with motoneuron diseases encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of motoneuron diseases. Recent results suggest that SMN interacts with hnRNP R and TDP-43 in neuronal processes, which are not part of the classical SMN complex. This point to an additional function of SMN, which could contribute to the high vulnerability of spinal motoneurons in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The current study elucidates functional links between SMN, the causative factor of SMA (spinal muscular atrophy), hnRNP R, and TDP-43, a genetic factor in ALS (amyotrophic lateral sclerosis). In order to characterize the functional interaction of SMN with hnRNP R and TDP-43, we produced recombinant proteins and investigated their interaction by co-immunoprecipitation. These proteins bind directly to each other, indicating that no other co-factors are needed for this interaction. SMN potentiates the ability of hnRNP R and TDP-43 to bind to ß-actin mRNA. Depletion of SMN alters the subcellular distribution of hnRNP R in motoneurons both in SMN-knockdown motoneurons and SMA mutant mouse (delta7 SMA). These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis and ALS. ALS and FTLD (frontotemporal lobar degeneration) are linked by several lines of evidence with respect to clinical and pathological characteristics. Both sporadic and familial forms are a feature of the ALS-FTLD spectrum, with numerous genes having been associated with these pathological conditions. Both diseases are characterized by the pathological cellular aggregation of proteins. Interestingly, some of these proteins such as TDP-43 and FUS have also common relations not only with ALS-FTLD but also with SMA. Intronic hexanucleotide expansions in C9ORF72 are common in ALS and FTLD but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non ATG-initiated translation is responsible for the pathophysiology. This study tries to characterize the cellular function of C9ORF72 protein. To address this, lentiviral based knockdown and overexpression of C9ORF72 was used in isolated mouse motoneurons. The results clearly show that survival of these motoneurons was not affected by altered C9ORF72 levels, whereas adverse effects on axon growth and growth cone size became apparent after C9ORF72 suppression. Determining the protein interactome revealed several proteins in complexes with C9ORF72. Interestingly, C9ORF72 is present in a complex with cofilin and other actin binding proteins that modulate actin dynamics. These interactions were confirmed both by co-precipitation analyses and in particular by functional studies showing altered actin dynamics in motoneurons with reduced levels of C9ORF72. Importantly, the phosphorylation of cofilin is enhanced in C9ORF72 depleted motoneurons and patient derived lymphoblastoid cells with reduced C9ORF72 levels. These findings indicate that C9ORF72 regulates axonal actin dynamics and the loss of this function could contribute to disease pathomechanisms in ALS and FTLD. N2 - Motoneuronerkrankungen bilden eine heterogene Gruppe von Pathologien, die durch die progressive Degeneration von Motoneuronen charakterisiert sind. Zunehmend werden genetische Faktoren in Assoziation mit Motoneuronerkrankungen identifiziert, die eine Funktion im RNA Metabolismus besitzen, was dafür spricht, dass ein gestörter RNA Metabolismus ein gemeinsames zugrunde liegendes Problem in mehreren, vielleicht allen, Formen von Motoneuronerkrankungen sein könnte. Neuere Ergebnisse legen nahe, dass SMN mit hnRNP R und TDP-43 in neuronalen Prozessen interagiert, die nicht Teil der klassischen Rolle des SMN Komplexes sind. Dies deutet auf eine zusätzliche Funktion von SMN hin, die zur hohen Störanfälligkeit von spinalen Motoneuronen in spinaler Muskelatrophie (SMA) und amyotropher Lateralsklerose (ALS) beitragen könnte. Die vorliegende Arbeit beleuchtet funktionelle Beziehungen zwischen SMN, dem auslösenden Faktor der SMA, und hnRNP R, sowie TDP-43, einem weiteren genetischen Faktor bei ALS. Um die funktionelle Interaktion von SMN mit hnRNP R und TDP-43 zu charakterisieren, wurden rekombinante Proteine hergestellt und ihre Interaktion durch co-Immunpräzipitation untersucht. Diese Proteine binden direkt an einander, was darauf hindeutet, dass für diese Interaktion keine weiteren co-Faktoren erforderlich sind. SMN potenziert die Fähigkeit von hnRNP R und TDP-43, β-Aktin mRNA zu binden. Depletion von SMN verändert die subzelluläre Verteilung von hnRNP R in Motoneuronen sowohl in SMN-knock-down Motoneuronen, als auch in der SMA Mausmutante (delta7 SMA). Diese Daten deuten auf Funktionen von SMN jenseits der snRNP Assemblierung hin, die entscheidend für die Rekrutierung und den Transport von RNA Partikel in Axonen und Axon Terminalen sein könnten, einem Mechanismus, der zur Pathogenese von SMA und ALS beitragen könnte. ALS und FTLD (fronto-temporale Lobus Degeneration) sind aufgrund mehrerer Nachweislinien bezüglich klinischer und pathologischer Charakteristika vernetzt. Sowohl sporadische als auch familiäre Formen sind Merkmal des ALS-FTLD Spektrums, wobei zahlreiche Gene mit diesen pathologischen Erscheinungen assoziiert wurden. Beide Krankheiten sind durch pathologische zelluläre Proteinaggregation charakterisiert. Interessanterweise haben einige dieser Proteine, wie TDP-43 und FUS, einen gemeinsamen Bezug nicht nur mit ALS-FTLD, sondern auch mit SMA. Intronische Hexanukleotid-Expansionen in C9ORF72 sind häufig in ALS und FTLD, es ist jedoch unbekannt, ob Funktionsverlust, Toxizität aufgrund der verlängerten RNA, oder Dipeptide von non-ATG initiierter Translation für die Pathophysiologie verantwortlich sind. Die vorliegende Arbeit versucht die zelluläre Funktion von C9ORF72 Protein zu charakterisieren. Hierfür wurde lentiviraler knock-down und Überexpression von C9ORF72 in isolierten Motoneuronen eingesetzt. Die Ergebnisse zeigen deutlich, dass das Überleben dieser Motoneurone durch veränderte C9ORF72 Konzentrationen nicht beeinflusst wurde, wohingegen negative Auswirkungen auf Axonwachstum und Wachstumskegelgröße nach C9ORF72 Suppression deutlich wurden. Die Bestimmung des Protein Interaktoms identifizierte mehrere Proteinkomplexe mit C9ORF72. Interessanterweise liegt C9ORF72 in einem Komplex mit Cofilin und anderen Aktin-bindenden Protein vor, welche die Aktin Dynamik modulieren. Diese Interaktionen wurden sowohl durch Analyse von co-Präzipitationen als auch besonders durch funktionelle Studien bestätigt, die eine veränderte Aktin Dynamik in Motoneuronen mit reduzierter C9ORF72 Konzentration zeigten. Wichtig ist die Beobachtung, dass die Phosphorylierung von Cofilin in C9ORF72 depletierten Motoneuronen und in Lymphoblastoid-Zellen mit reduzierter C9ORF72 Konzentration verstärkt ist. Diese Ergebnisse zeigen, dass C9ORF72 die axonale Aktin Dynamik reguliert und dass der Verlust dieser Funktion zu Krankheits-Pathomechanismen in ALS und FTLD beitragen könnte. KW - Motoneuron KW - RNA binding proteins KW - Krankheit KW - RNS-Bindungsproteine KW - Motoneuron diseases Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141907 ER - TY - THES A1 - Pei, Geng T1 - The Role of Raf-mediated Signalling Pathways for Motoneuron T1 - Die Rolle von Raf-vermittelten Signalwegen bei Entwicklung und Überleben von Motoneuronen N2 - The transmission of proliferative and developmental signals from activated cell-surface receptors to initiation of cellular responses in the nucleus is synergically controlled by the coordinated action of a diverse set of intracellular signalling proteins. The Ras/Raf/MEK/MAPK signalling pathway has been shown to control the expression of genes which are crucial for the physiological regulation of cell proliferation, differentiation and apoptosis. Within this signalling cascade, the Raf protein family of serine/threonine kinases serves as a central intermediate which connects to many of other signal transduction pathways. To elucidate the signalling functions of the different Raf kinases in motoneurons during development, the expression, distribution and subcellular localization of Rafs in the spinal cord and the facial nucleus in brainstem of mice at various embryonic and postnatal stages were investigated. Moreover, we have investigated the intracellular redistribution of Raf molecules in isolated motoneurons from 13 or 14 day old mouse embryos, after addition or withdrawal of neurotrophic factors to induce Raf kinases activation in vitro. Furthermore, in order to investigate the potential anti-apoptotic function of Raf kinases on motoneurons, we isolated motoneurons from B-raf-/- and c-raf-1-/- mouse embryos and analysed the survival and differentiation effects of neurotrophic factors in motoneurons lacking B-Raf and c-Raf-1. We provide evidence here that all three Raf kinases are expressed in mouse spinal motoneurons. Their expression increases during the period of naturally occurring cell death of motoneurons. In sections of embryonic and postnatal spinal cord, motoneurons express exclusively B-Raf and c-Raf-1, but not A-Raf, and subcellularly Raf kinases are obviously colocalized with mitochondria. In isolated motoneurons, most of the B-Raf or c-Raf-1 immunoreactivity is located in the perinuclear space but also in the nucleus, especially after activation by addition of CNTF and BDNF in vitro. We found that c-Raf-1 translocation from the cytosol into the nucleus of motoneurons after its activation by neurotrophic factors is a distinct event. As a central finding of our study, we observed that the viability of isolated motoneurons from B-raf but not c-raf-1 knockout mice is lost even in the presence of CNTF and other neurotrophic factors. This indicates that B-Raf but not c-Raf-1, which is still present in B-raf deficient motoneurons, plays a crucial role in mediating the survival effect of neurotrophic factors during development. In order to prove that B-Raf is an essential player in this scenario, we have re-expressed B-Raf in mutant sensory and motor neurons by transfection. The motoneurons and the sensory neurons from B-raf knockout mouse which were transfected with exogenous B-raf gene revealed the same viability in the presence of neurotrophic factors as primary neurons from wild-type mice. Our results suggest that Raf kinases have important signalling functions in motoneurons in mouse CNS. In vitro, activation causes redistribution of Raf protein kinases, particularly for c-Raf-1, from motoneuronal cytoplasm into the nucleus. This redistribution of c-Raf-1, however, is not necessary for the survival effect of neurotrophic factors, given that B-raf-/- motor and sensory neurons can not survive despite the presence of c-Raf-1. We hypothesize that c-Raf-1 nuclear translocation may play a direct role in transcriptional regulation as a consequence of neurotrophic factor induced phosphorylation and activation of c-Raf-1 in motoneurons. Moreover, the identification of target genes for nuclear translocated c-Raf-1 and of specific cellular functions initiated by this mechanism awaits its characterization. N2 - Die Vermittlung von wachstumsfördernden und entwicklungsspezifischen Signalen von aktivierten Zelloberflächenrezeptoren führt zur Initiation von Transkriptionsprogrammen im Zellkern, die durch das koodinierte Zusammenwirken von intrazellulären Signalproteinen synergistisch gesteuert werden. Der Ras/Raf/MEK/MAPK-Weg steuert die Expression von Genen für die physiologische Regulation der Zellproliferation, Differenzierung und Apoptose. Innerhalb dieser Signalkaskade stellen die Serin/Threonin Kinasen der Raf Familie eine zentrale Zwischenstufe dar, die Verbindungen zu vielen anderen Signaltransduktionswegen herstellt. Um die Funktionen der verschiedenen Raf-Kinasen in Motoneuronen während der Entwicklung aufzuklären, wurden die Expression, Verteilung und subzelluläre Lokalisation der Raf-Isoformen in spinalen Motoneuronen und im Nucleus Fazialis der Maus während der Embryonalentwicklung und postnatal untersucht. Desweiteren haben wir die intrazelluläre Umverteilung der Raf-Moleküle in isolierten Motoneuronen von 13 oder 14 Tage alten Mäusembryonen untersucht. Um die Rolle der Raf-Kinasen nach Zugabe oder Entzug von neurotrophen Faktoren bei Motoneuronen zu untersuchen, analysierten wir die Überlebens-und Differenzierungseffekte von neurotrophen Faktoren bei Motoneuronen von B-raf oder c-raf-1 defizienten Mäusen. Wir zeigen in dieser Arbeit, daß alle drei Raf-Kinasen in spinalen Motoneuronen der Mäuse exprimiert sind. Ihre Expression steigt während der Zeit des natürlich auftretenden Zelltods. An Schnitten von embryonalem und postnatalem Rückenmark exprimieren Motoneurone ausschließlich B-Raf and c-Raf-1, aber nicht A-Raf. Raf-Kinasen sind offensichtlich an Mitochondrien lokalisiert. In isolierten Motoneuronen findet man B-Raf und c-Raf-1, Immunreaktivität vor allem im perinukleären Bereich, aber auch im Zellkern, vor allem nach Aktivierung durch Zugabe von CNTF und BDNF in vitro. Wir haben gefunden, daß die Translokation von c-Raf-1 vom Zytosol in den Nukleus von Motoneuronen nach Aktivierung durch neurotrophe Faktoren ein spezifischer Vorgang ist. Als zentralen Befund dieser Arbeit beobachteten wir, daß Motoneurone von B-raf-/-, aber nicht von c-raf-1-/-, Embryonen nicht lebensfähig sind, auch nicht in Gegenwart von CNTF oder anderer neurotropher Faktoren. Dies bedeutet, daß B-Raf und nicht c-Raf-1, welches noch immer in B-raf defizienten Motoneuronen präsent ist, eine entscheidende Rolle als Vermitter des Überlebenseffektes von neurotrophen Faktoren spielt. Um zu beweisen, daß B-Raf hierbei eine essentielle Komponente darstellt, haben wir in B-raf defizienten sensorischen und Motoneuronen B-Raf durch Transfektion exprimiert. Erfolgreich mit B-raf Plasmid transfizierte B-raf-/- sensorische und Motoneurone zeigten dieselbe Überlebensfähigkeit in Gegenwart von neurotrophen Faktoren wie primäre Neurone von Wildtyp-Mäusen. Diese Arbeit zeigt daher, daß Raf-Kinasen wichtige Funktionen in Motoneuronen der Maus haben. Die Aktivierung von Raf-Kinasen in vitro führt zur Änderung ihrer subzellulären Verteilung, vor allem von c-Raf-1 vom Zytoplasma in den Kern. Diese Umverteilung von c-Raf-1 ist jedoch nicht notwendig für den Überlebenseffekt von neurotrophen Faktoren, vor allem, wenn man in Betracht zieht, daß B-raf defiziente sensorische und Motoneuronen trotz der Gegenwart von c-Raf-1 nicht überleben. Wir nehmen an, daß die nukleäre Translokation von c-Raf-1 eine direkte Rolle bei der transkriptionellen Regulation durch neurotrophe Faktoren spielt. Die Indentifizierung von c-Raf-1 regulierten Zielgenen und von durch diese beeinflussten zellulären Funktionen ist eine Aufgabe für die Zukunft. KW - Maus KW - Motoneuron KW - Zelldifferenzierung KW - Raf KW - Signaltransduktion KW - Raf-Kinasen KW - Motoneuron KW - Raf-Kinase KW - Zentrales Nervensystem KW - motoneuron KW - Raf KW - CNS Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1846 ER - TY - THES A1 - Rathod, Reenaben Jagdishbhai T1 - Study of local protein synthesis in growth cones of embryonic mouse motor neurons T1 - Analyse der lokalen Proteinsynthese in Wachstumskegeln von embryonalen Maus Motoneuronen N2 - In cultured motoneurons of a mouse model for the motoneuron disease spinal muscular atrophy (SMA), reduced levels of the protein SMN (survival of motoneurons) cause defects in axonal growth. This correlates with reduced β-actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of β-actin mRNA are crucial for motoneuron function. However, direct evidence that indeed local translation is a physiological phenomenon in growth cones of motoneurons was missing. Here, a lentiviral GFP-based reporter construct was established to monitor local protein synthesis of β-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the β-actin reporter construct was differentially regulated by different laminin isoforms, indicating that laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of β-actin mRNA was deregulated when motoneurons of a mouse model for type I SMA (Smn-/-; SMN2) were analyzed. In situ hybridization revealed reduced levels of β-actin mRNA in the axons of Smn-/-; SMN2 motoneurons. The distribution of the β-actin mRNA was not modified by different laminin isoforms as revealed by in situ hybridization against the mRNA of the eGFP encoding element of the β-actin reporter. In case of the mRNA of α-actin and γ-actin isoforms, the endogenous mRNA did not localize to the axons and the localization pattern was not affected by the SMN levels expressed in the cell. Taken together our findings suggest that regulation of local translation of β-actin in growth cones of motoneurons critically depends on laminin signaling and the amount of SMN protein. Embryonic stem cell (ESC)-derived motoneurons are an excellent in vitro system to sort out biochemical and cellular pathways which are defective in neurodegenerative diseases like SMA. Here, a protocol for the differentiation and antibody-mediated enrichment of ESC-derived motoneurons is presented, which was optimized during the course of this study. Notably, this study contributes the production and purification of highly active recombinant sonic hedgehog (Shh), which was needed for the efficient differentiation of mouse ESCs to motoneurons. ESC-derived motoneurons will now offer high amounts of cellular material to allow the biochemical identification of disease-relevant molecular components involved in regulated local protein synthesis in axons and growth cones of motoneurons. N2 - In kultivierten Motoneuronen eines Maus-Models für die Motoneuronen-Erkrankung Spinale Muskelatrophie (SMA) verursachen verminderte Mengen des Proteins SMN (survival of motoneurons) Schäden im axonalen Wachstum. Dies korreliert mit einer verminderten Menge an β-Aktin kodierender mRNA und β-Aktin Protein. Dies impliziert, dass anterograder Transport und lokale Translation von β-Aktin mRNA für die Motoneuronfunktion notwendig ist. Bislang gab es jedoch keinen direkten Nachweiß funktioneller lokaler Translation in Wachstumskegeln von Motoneuronen. In dieser Arbeit wurde ein lentivirales GFP-basierendes Reporterkonstrukt etabliert, welches lokale Proteinsynthese von β-Aktin mRNA nachweißt. Zeitraffermikroskopie von GFP-vermittelter Fluoerszenzregeneration nach Fotobleichung (fluorescence recovery after photobleaching; FRAP) in lebenden Motoneuronen zeigte, dass β-Aktin in Wachstumskegeln embryonaler Motoneuronen lokal translatiert wird. Interessanterweise wurde die lokale Translation des β-Aktin Reporterkonstrukts differentiell durch verschiedene Laminin-Isoformen reguliert. Dies gibt einen Hinweis, dass Laminin als extrazelluläres Signalmolekül die Regulation der lokalen Translation in Wachstumskegeln reguliert. Die lokale Translation von β-Aktin mRNA war dereguliert wenn Motoneurone eines Mausmodels für die Typ I SMA (Smn-/-;SMN2) analysiert wurden. In situ Hybridisierung bestätigte eine Reduktion von β-Aktin mRNA in den Axonen von Smn-/-;SMN2 Motoneuronen. Die Verteilung der β-Aktin mRNA wurde von verschiedenen Laminin-Isoformen nicht beeinflusst, wie durch in situ Hybridisierung gegen eGFP kodierende Elemente des β-Aktin Reporters bestätigt werden konnte. Im Fall der mRNA für α-Aktin und γ-Aktin Isoformen wurde keine axonale Lokalisierung der endogenen mRNAs festgestellt und das Lokalisierungsmuster dieser mRNAs war durch reduzierte zelluläre SMN Mengen nicht beeinflusst. Zusammenfassend deuten diese Befunde darauf hin, dass die lokale Translation von β-Aktin in Wachstumskegeln von Motoneuronen von Laminin-Signalgebung und von der Menge an SMN Protein abhängt. Motoneurone aus embryonalen Stammzellen sind ein etabliertes in vitro System um biochemische und zelluläre Signalwege zu identifizieren, die in neurodegenerativen Erkrankungen wie SMA betroffen sind. Hier wird ein Protokoll zur Differenzierung und Antikörper-gestützten Anreicherung von Motoneuron aus embryonalen Stammzellen präsentiert, welches im Rahmen dieser Arbeit optimiert wurde. Im Besonderen wird die Herstellung und Reinigung von hochaktivem Sonic Hedgehog (Shh) vorgestellt, welches für die effiziente Differenzierung von embryonalen Stammzellen der Maus notwendig war. Motoneurone aus embryonalen Stammzellen werden in zukünftigen Studien nun große Mengen an zellulärem Material liefern, und somit auf biochemischer Ebene die Identifizierung von krankheitsrelevanten molekularen Komponenten ermöglichen, die in der Regulation der lokalen Proteinsynthese in Axonen und Wachstumskegeln von Motoneuronen involviert sind. KW - Motoneuron KW - Maus KW - Embryo KW - Proteinsynthese KW - lokale Proteinsynthese KW - embryonale Maus KW - SMN KW - local translation KW - SMN KW - motor neuron KW - beta actin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72045 ER - TY - THES A1 - Subramanian, Narayan T1 - Role of NaV1.9 in activity dependent axon growth in embryonic cultured motoneurons T1 - Die Rolle der NaV1.9 in Aktivität abhängig Axonwachstum in embryonalen kultivierten Motoneuronen N2 - Spontaneous neural activity has been shown to regulate crucial events in neurite growth including axonal branching and path finding. In animal models of spinal muscular atrophy (SMA) cultured embryonic mouse motoneurons show distinct defect in axon elongation and neural activity. This defect is governed by abnormal clustering of Ca2+ channels in the axonal regions and the protruding growth cone area. The mechanisms that regulate the opening of calcium channels in developing motoneurons are not yet clear. The question was addressed by blocking neural activity in embryonic cultured motoneurons by pharmacological inhibition of voltage-gated sodium channels (VGSC) by saxitoxin (STX) and tetrodotoxin (TTX). Low dosages of STX resulted in significant reduction of axon growth and neural activity in cultured motoneurons. This pharmacological treatment did not affect survival of motoneurons in comparison to control motoneurons that was grown in the presence of survival neurotrophic factors BDNF and CNTF. It was also found that STX was 10 times more potent than TTX a common inhibitor of VGSC with a reduced activity on the TTX-insensitive sodium channels NaV1.5, NaV1.8 and NaV1.9. Reverse Transcriptase-PCR experiments revealed the presence of NaV1.9 as the likely candidate that begins to express from embryonic stage sixteen in the mouse spinal cord. Immunolabelling experiments showed that the channel is expressed in the axonal compartments and axonal growth cones in cultured motoneurons. Suppression of NaV1.9 in cultured motoneurons by lentivirus mediated short hairpin-RNA (shRNA) resulted in shorter axon length in comparison with uninfected and scrambled constructs. Further, embryonic motoneurons cultured from NaV1.9 knockout mice also showed a significant reduction in neural activity and axon growth. The findings of this work highlight the role of NaV1.9 as an important contender in regulating activity dependent axon growth in embryonic cultured motoneurons. NaV1.9 could therefore be considered as a prospective molecule that could play an important role in regulating axon growth in motoneuron disease models like spinal muscular atrophy (SMA). N2 - Spontane neuronale Aktivität reguliert essentielle Ereignisse im Neuritenwachstum, wie beispielsweise die axonale Verzweigung und die Erkennung des Wachstumspfades. Motoneurone, die aus Tiermodellen der Spinalen Muskelatrophie (SMA) gewonnen werden, zeigen einen auffälligen Defekt im Streckenwachstum von Axonen und in der neuronalen Aktivität. Dieser Defekt wird von anormaler Clusterbildung von Ca2+ Kanälen in axonalen Regionen und in Wachstumskegeln begleitet. Die Mechanismen, die das Öffnen von Kalziumkanälen in embryonalen Motoneuronen in der Entwicklung regulieren, und die für das aktivitätsabhängige Axonwachstum benötigt werden, sind nicht bekannt. Diese Frage wurde in dieser Studie bearbeitet, indem neuronale Aktivität in embryonalen Motoneuronen durch pharmakologische Inhibition von spannungsabhängigen Natriumkanälen durch Saxitoxin (STX) und Tetrodotoxin blockiert wurde. Geringe Dosen von Saxitoxin bewirkten eine deutliche Reduktion des Axonwachstums und der neuronalen Aktivität in kultivierten Motoneuronen. Diese pharmakologische Behandlung beeinflusste nicht das Überleben von Motoneuronen im Vergleich zu Kontroll-Motoneuronen, die in der Anwesenheit der neurotrophen Faktoren BDNF und CNTF kultiviert wurden. Saxitoxin war etwa 5-10-mal potenter als TTX, ein üblicher Blocker spannungsabhängiger Natriumkanäle mit einer verminderte Aktivität auf die TTX-insensitiven Natriumkanäle NaV1.5, NaV1.8, und NaV1.9. Reverse-Transkriptase-PCR Experimente bestätigten die Anwesenheit von NaV1.9 am Tag E16 (embryonaler Tag 16) im Rückenmark der Maus. NaV1.9 ist ein einzigartiger Typus von einem Natriumkanal welcher in der Lage ist neuronale Erregbarkeit in der Nähe des Ruhemembranpotentials zu steuern. Deshalb war NaV1.9 ein guter Kandidat für einen Kanal, der spontane Erregung in Motoneuronen vermittelt. Immunofärbungen zeigten, dass NaV1.9 in axonalen Kompartimenten und axonalen Wachstumskegeln von kultivierten Motoneuronen exprimiert ist. Die Unterdrückung von NaV1.9 in kultivierten Motoneuronen durch lentiviralexprimierte short hairpin-RNA (shRNA) resultierte in kürzerer Axonlänge, im Vergleich zu nicht-infizierten Motoneuronen oder Motoneuronen, die eine sinnlose Kontroll-shRNA Sequenz exprimierten. Embryonale, kultivierte Motoneurone von NaV1.9 knockout Mäusen zeigten eine signifikante Verringerung der neuronalen Aktivität und verkürzte Axone. Diese Ergebnisse weisen auf eine Bedeutung von NaV1.9 im aktivitätsabhängigen Axonwachstum hin KW - Axon KW - Embryonalentwicklung KW - Motoneuron KW - Natriumkanal KW - Motoneuronen KW - NaV1.9 KW - motoneuron KW - Nav1.9 KW - axon growth Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57536 ER - TY - THES A1 - Thangaraj Selvaraj, Bhuvaneish T1 - Role of CNTF-STAT3 signaling for microtubule dynamics inaxon growth and maintenance: Implications in motoneuron diseases T1 - Die Funktion des CNTF-STAT3 Signalweges für die Microtubuli Dynamik in Axonalem Wachstum und Axon Erhalt: Implikationen für Motoneuronenerkrankungen N2 - Neurotrophic factor signaling modulates differentiation, axon growth and maintenance, synaptic plasticity and regeneration of neurons after injury. Ciliary neurotrophic factor (CNTF), a Schwann cell derived neurotrophic factor, has an exclusive role in axon maintenance, sprouting and synaptic preservation. CNTF, but not GDNF, has been shown to alleviate motoneuron degeneration in pmn mutant mice carrying a missense mutation in Tbce gene, a model for Amyotrophic Lateral Sclerosis (ALS). This current study elucidates the distinct signaling mechanism by which CNTF rescues the axonal degeneration in pmn mutant mice. ... N2 - Neurotrophe Faktoren beeinflussendie die neuronale Differenzierung, das Wachstum und die Stabilisierung von Axonen sowie Synaptische Plastizität und die Regeneration von Neuronen nach Verletzung. Der von Schwannzellen synthetisierte neurotrophe Faktor Ciliary neurotrophic factor (CNTF) spielt eine wichtige Rolle bei der axonalen Erhaltung sowie bei der Induktion und Reduktion von axonalen Verzweigungen. Die Behandlung der pmn Mausmutante mit CNTF, aber nicht mit GDNF führt zu einem späteren Krankheitsbeginn und verminderten Fortschreiten der Motoneuronendegeneration. Diese Mausmutante, die eine Punktmutation im Tbce Gen trägt, dient als Modell für die Amyotrophe Lateralsklerose. Ziel der vorliegenden Arbeit war es, die zugrunde liegenden Signalkaskaden aufzudecken, die den CNTF-vermittelten Effekt auf den Krnakheitsverlauf bei der pmn Maus verursachen. ... KW - Ciliary neurotrophic factor KW - STAT KW - CNTF KW - STAT3 KW - Stathmin KW - Microtubules KW - Signaltransduktion KW - Motoneuron KW - Krankheit Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76889 ER - TY - THES A1 - Lechner, Barbara Dorothea T1 - Modulation des axonalen Wachstums primärer Motoneurone durch cAMP in einem Mausmodell für die Spinale Muskelatrophie T1 - Modulation of axonal growth of primary spinal motor neurons by cAMP in a mouse model for Spinal Muscular Atrophy N2 - Die Spinale Muskelatrophie (SMA) ist eine häufige autosomal-rezessiv vererbte Erkrankung des motorischen Nervensystems bei Kindern. Ursache der Degeneration von spinalen Motoneuronen ist der homozygote Verlust des SMN- (survival of motoneuron) Gens und ein dadurch bedingter Mangel an SMN-Protein. Untersuchungen an Motoneuronen von Smn-defizienten Mäusen ergaben Störungen des axonalen Längenwachstums aufgrund einer Fehlverteilung des Zytoskelettproteins beta-Aktin und seiner mRNA in den Axonterminalen. Das Axonwachstum wird durch Aktin-Polymerisierung im Wachstumskegel gesteuert. beta-Aktin-mRNA findet sich auch in Axonen, und die lokale Proteinsynthese kann durch neuronale Aktivierung gesteigert werden. Das SMN-Protein ist am axonalen Transport von beta-Aktin beteiligt. In der vorliegenden Arbeit ergaben Western Blot-Analysen in neuralen Stammzellen (NSC) sowie spinalen Motoneuronen in vitro eine Steigerung der SMN-Proteinexpression durch 8-CPT-cAMP. Zur Untersuchung der Auswirkungen der erhöhten SMN-Proteinmenge auf die Pathologie der Motoneurone wurde ein in-vitro-Assay entwickelt, mit dessen Hilfe gezeigt werden konnte, dass eine Behandlung mit 100 µM 8-CPT-cAMP die axonalen Veränderungen isolierter embryonaler Smn-defizienter Motoneurone kompensieren kann. Motoneurone von 14 Tage alten Smn-defizienten und Kontroll-Mausembryonen wurden über sieben Tage hinweg auf einer Matrix aus Poly-Ornithin und Laminin-111 bzw. Laminin-121/221 kultiviert und mit 100µM cAMP und neurotrophen Faktoren behandelt. Nach Fixierung wurden die Zellen mit Antikörpern gegen Islet-1/2, tau und beta-Aktin gefärbt, mit Hilfe eines konfokalen Mikroskops fotografiert und digital vermessen. 8-CPT-cAMP erhöht den beta-Aktin-Gehalt in den axonalen Wachstumskegeln von Smn-defizienten Motoneuronen. Die Größe der Wachstumskegel nimmt durch die Behandlung um das 2-3fache zu und erreicht normale Werte. Auf Laminin-111 bleibt das Längenwachstum der Axone durch 100µM 8-CPT-cAMP unbeeinflusst, auf Laminin-121/221 wird das Längenwachstum normalisiert. Die beta-Aktin-Verteilung innerhalb der Axone und Wachstumskegel von Smn-defizienten Motoneuronen erscheint durch die cAMP-Behandlung nahezu normalisiert. Die Wiederherstellung der beta-Aktin-Verteilung in Wachstumskegeln durch cAMP kann große Auswirkungen auf die Funktionalität der Motoneurone haben. Die Ergebnisse sind möglicherweise ein erster Schritt auf dem Weg zu einer Therapie für die Spinale Muskelatrophie. N2 - Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by loss of alpha-motoneurons in the spinal chord due to low levels of the survival motor neuron (SMN) protein. The genetic cause is the homozygous loss or mutation of the telomeric SMN1 gene and retention of the centromeric SMN2 gene, whose transcripts consist of about 90% truncated and unstable and only 10% functional protein. Motoneurons of Smn-deficient SMN2 transgenic mouse embryos cultured on laminin-1 show abnormalities compared to wildtype controls such as shorter axons, smaller growth cones and a ß-actin protein and mRNA deficit in the distal part of the axon. ß-actin plays a major role in growth cone motility and transmitter release at the presynapse. In addition, SMN works in a complex to transport ß-actin mRNA, which is known to be localized and locally translated in axons and growth cones, along the axon. Local ß-actin protein synthesis can be stimulated by increased neuronal activation. We determined the effects of cAMP on ß-actin localisation in axons as well as on axonal growth parameters in Smn-deficient primary motoneurons. Motoneurons of 14 days old Smn-/-, SMN2 transgenic and wildtype mouse embryos were cultured on laminin for 7 days with 100µM 8-CPT-cAMP and neurotrophic factors BDNF and CNTF. Fluorescence staining and digital measurements revealed a major effect of cAMP treatment on ß-actin distribution and growth cone size, which were restored to normal. Neurite lengths on laminin-111 remained unaffected but were normalized on substrate containing a synapse-specific ß2-laminin isoform. Western blots with neural stem cells (NSC) and heterozygous Smn+/-; SMN2 transgenic motoneurons treated with 100µM cAMP showed a marked upregulation of Smn protein expression. These data point to an important role for cAMP as a possible target of SMA drug therapy. KW - Spinale Muskelatrophie KW - Motoneuron KW - Neurobiologie KW - Laminin KW - Actin KW - SMN KW - cAMP KW - SMN KW - cAMP KW - Spinal Muscular Atrophy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39585 ER -