TY - JOUR A1 - Kohl, S. A1 - Gruendler, T. O. J. A1 - Huys, D. A1 - Sildatke, E. A1 - Dembek, T. A. A1 - Hellmich, M. A1 - Vorderwulbecke, M. A1 - Timmermann, L. A1 - Ahmari, S. E. A1 - Klosterkoetter, J. A1 - Jessen, F. A1 - Sturm, V. A1 - Visser-Vandewalle, V. A1 - Kuhn, J. T1 - Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder JF - Translational Psychiatry N2 - Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation. KW - nucleus KW - serotonin KW - schizophrenia KW - dopamine KW - double-blind KW - psychiatric disorders KW - in vivo KW - acoustic startle KW - reflex KW - modulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138300 VL - 5 IS - e675 ER - TY - JOUR A1 - Rivero, O A1 - Selten, MM A1 - Sich, S A1 - Popp, S A1 - Bacmeister, L A1 - Amendola, E A1 - Negwer, M A1 - Schubert, D A1 - Proft, F A1 - Kiser, D A1 - Schmitt, AG A1 - Gross, C A1 - Kolk, SM A1 - Strekalova, T A1 - van den Hove, D A1 - Resink, TJ A1 - Kasir, N Nadif A1 - Lesch, KP T1 - Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition JF - Translational Psychiatry N2 - Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. KW - genome-wide association KW - deficit hyperactivity disorder KW - psychiatric disorders KW - neurodevelopmental disorders KW - synaptic plasticity KW - response inhibition KW - positive interneurons KW - T-cadherin KW - long-term potentiation KW - attention deficit/hyperactivity disorder Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145218 VL - 5 IS - e655 ER -