TY - JOUR A1 - Pook, Torsten A1 - Freudenthal, Jan A1 - Korte, Arthur A1 - Simianer, Henner T1 - Using Local Convolutional Neural Networks for Genomic Prediction JF - Frontiers in Genetics N2 - The prediction of breeding values and phenotypes is of central importance for both livestock and crop breeding. In this study, we analyze the use of artificial neural networks (ANN) and, in particular, local convolutional neural networks (LCNN) for genomic prediction, as a region-specific filter corresponds much better with our prior genetic knowledge on the genetic architecture of traits than traditional convolutional neural networks. Model performances are evaluated on a simulated maize data panel (n = 10,000; p = 34,595) and real Arabidopsis data (n = 2,039; p = 180,000) for a variety of traits based on their predictive ability. The baseline LCNN, containing one local convolutional layer (kernel size: 10) and two fully connected layers with 64 nodes each, is outperforming commonly proposed ANNs (multi layer perceptrons and convolutional neural networks) for basically all considered traits. For traits with high heritability and large training population as present in the simulated data, LCNN are even outperforming state-of-the-art methods like genomic best linear unbiased prediction (GBLUP), Bayesian models and extended GBLUP, indicated by an increase in predictive ability of up to 24%. However, for small training populations, these state-of-the-art methods outperform all considered ANNs. Nevertheless, the LCNN still outperforms all other considered ANNs by around 10%. Minor improvements to the tested baseline network architecture of the LCNN were obtained by increasing the kernel size and of reducing the stride, whereas the number of subsequent fully connected layers and their node sizes had neglectable impact. Although gains in predictive ability were obtained for large scale data sets by using LCNNs, the practical use of ANNs comes with additional problems, such as the need of genotyping all considered individuals, the lack of estimation of heritability and reliability. Furthermore, breeding values are additive by design, whereas ANN-based estimates are not. However, ANNs also comes with new opportunities, as networks can easily be extended to account for additional inputs (omics, weather etc.) and outputs (multi-trait models), and computing time increases linearly with the number of individuals. With advances in high-throughput phenotyping and cheaper genotyping, ANNs can become a valid alternative for genomic prediction. KW - phenotype prediction KW - Keras KW - genomic selection KW - selection KW - breeding KW - machine learning KW - deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216436 VL - 11 ER - TY - JOUR A1 - Fukushima, Kenji A1 - Pollock, David D. T1 - Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution JF - Nature Communications N2 - The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution. KW - phylogenetic trees KW - adaptive conflict KW - divergence times KW - duplicate genes KW - recent origin KW - package KW - selection KW - alignmen KW - rates KW - biology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230468 VL - 11, ER -