TY - JOUR A1 - Timmermans, Wim J. A1 - van der Tol, Christiaan A1 - Timmermans, Joris A1 - Ucer, Murat A1 - Chen, Xuelong A1 - Alonso, Luis A1 - Moreno, Jose A1 - Carrara, Arnaud A1 - Lopez, Ramon A1 - Fernando de la Cruz, Tercero A1 - Corcoles, Horacio L. A1 - de Miguel, Eduardo A1 - Sanchez, Jose A. G. A1 - Perez, Irene A1 - Belen, Perez A1 - Munoz, Juan-Carlos J. A1 - Skokovic, Drazen A1 - Sobrino, Jose A1 - Soria, Guillem A1 - MacArthur, Alasdair A1 - Vescovo, Loris A1 - Reusen, Ils A1 - Andreu, Ana A1 - Burkart, Andreas A1 - Cilia, Chiara A1 - Contreras, Sergio A1 - Corbari, Chiara A1 - Calleja, Javier F. A1 - Guzinski, Radoslaw A1 - Hellmann, Christine A1 - Herrmann, Ittai A1 - Kerr, Gregoire A1 - Lazar, Adina-Laura A1 - Leutner, Benjamin A1 - Mendiguren, Gorka A1 - Nasilowska, Sylwia A1 - Nieto, Hector A1 - Pachego-Labrador, Javier A1 - Pulanekar, Survana A1 - Raj, Rahul A1 - Schikling, Anke A1 - Siegmann, Bastian A1 - von Bueren, Stefanie A1 - Su, Zhongbo (Bob) T1 - An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign JF - Acta Geophysica N2 - The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made. KW - multi scale heterogeneity KW - quantitative remote sensing KW - remote KW - evapotranspiration KW - validation KW - issues KW - energy KW - models KW - water KW - flux KW - land-atmosphere interaction KW - turbulence KW - calibration and validation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136491 VL - 63 IS - 6 ER - TY - JOUR A1 - Saddique, Naeem A1 - Usman, Muhammad A1 - Bernhofer, Christian T1 - Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, northern Pakistan JF - Water N2 - Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change. KW - water balance KW - hydrological regime KW - evapotranspiration KW - uncertainties KW - climate change KW - SWAT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193175 SN - 2073-4441 VL - 11 IS - 10 ER -