TY - THES A1 - Vukicevic, Vladimir T1 - Mechanisms of apoptosis modulation and their contribution to genomic instability in tumor cells T1 - Mechanismen von Apostose Modulation und ihr Beitrag zur genomischen Instabilität N2 - The concept of programmed cell death has been increasingly considered from various aspects since early 1970’s. Primarily, knowledge of apoptosis referred to morphological changes in which chromatin is condensed and increasingly fragmented, revealed as small structure in the nucleus. The membrane shrinks and the cell becomes dense as can be seen by flow cytometry. Interestingly, similar modes of cell deletion were observed in nematodes indicating that apoptosis is a highly conserved machinery. Three Caeonorhabditis elegans gene products are found to have high homology with mammalian apoptotic genes: CED-9 inhibits apoptosis and is related to bcl-2; CED-3 and CED-4 promote apoptosis and are related to caspase 9 and APAF-1. Apoptosis is not accidental death, but a highly controlled and medically important molecular process. More general terms such as ‘physiological’ or ‘regulated’ cell death cover different morphologies and sequences. Programmed suicide of cells that were subjected to toxic exogenous and endogenous stimuli plays a key role in understanding cancer development and its treatment. Apoptosis involves sequences of events that may overlap and play contradictory or antagonistic roles in cell death. Generally, the ability to trigger apoptotic processes in cancer cells would benefit an organism by keeping homeostasis intact. Programmed cell death is a regularly present mechanism, for instance, in lymphocyte recruitment in the thymus where immature lymphocytes may recognize host antigens. Therefore, such lymphocytes become apoptotic and are removed by macrophages. Removal prevents possible autoimmune diseases. Unlike apoptosis, necrosis is a passive process of cell death recognizable by membrane morphological changes and accompanied by leakage of intracellular material into intercellular space that may cause inflammation in the organism. Signals that may initiate apoptosis are generally classified into two groups: signals that launch extrinsic apoptotic pathways starting with aggregation of death receptors and intrinsic apoptotic pathways starting with disruption of intracellular homeostasis such as the release of mitochondrial factors or DNA degradation. Early in the process, apoptotic signals may lead to a broad range of signaling mechanisms such as DNA repair and assessment of DNA damage (check points). Thus, failure in any of these steps can cause a defective apoptotic response that plays a decisive role in both tumorigenesis and drug resistance in tumor treatment. More distinctly, the capability of cancer cells to go into apoptosis prevents further neoplastic changes. Generally, the purpose of this study is to investigate the balance between formation of genomic damage and induction of apoptosis under genotoxic stress. After genotoxic insult there are different possibilities for the fate of a cell (Figure 1). The genomic integrity is analyzed at cellular checkpoints, usually leading to a delay in cell cycle progression if DNA was damaged. Mutations in genes such as p53 and p21 change the cellular response to genotoxic stress and may alter the balance between apoptosis and genomic damage. However, p53 is usually mutated or not expressed in 70% of human tumors. Alterations in p53 states that reflect distinct apoptotic response upon induction of DNA damage were examined. In this study, three cell lines with distinct p53 states were used: TK6 harboring wild-type p53, WTK1 with mutated p53 and NH32 with knocked out p53. In the present work we applied different approaches to investigate the correlation between DNA damage and apoptotic responsiveness in cancer cell lines with different p53 states or in hormone responsive cell lines with over expressed bcl-2 gene. We were focused on effects caused by temporary down regulation of the p53 and Bcl-2 activity in human lymphoblastoid cell lines. In addition, we investigated the impact of estradiol-induced proliferation on apoptosis and DNA damage in stably transfected cells with bcl-2gene. N2 - Apoptotische Ereignisse als Reaktion auf exogen induzierten gentoxischen Schaden erhält die Homeostase von Organismen durch die Entfernung betroffener Zellen. Fehler in der apoptotischen Reaktion spielen sowohl für die Tumorentstehung als auch für die Chemotherapie-Resistenz eine wichtige Rolle. Der Zweck dieser Studie war es, die Balance von Genom-Schaden, gemessen durch Mikrokern-Bildung, und der Induktion von Apoptose als Reaktion auf gentoxischen Stress zu untersuchen. Mikrokerne erscheinen als Folge unterschiedlicher Chromosomenaberrationen. Der Mikrokern-Test hat schnell an Akzeptanz gewonnen und wird inzwischen als Routine-Test für Gentoxizitätsprüfung eingesetzt. Die Hypothese war, dass die Mikrokern-Bildung umgekehrt mit dem Auftreten von Apoptose korreliert ist. In drei humanen Zelllinien mit wildtyp p53, mutiertem p53 und knock-out p53 konnten durch Behandlung mit dem gentoxischen Topoisomerase-II-Hemmer Etoposid Apoptosen induziert werden. Die dabei beobachtete Erhöhung der Mikrokern-Häufigkeit war in Zellen mit mutiertem p53 stärker ausgeprägt als in Zellen mit wildtyp p53 oder knock-out p53. Drei Vorgehensweisen wurden angewandt, um die molekularen Mechanismen zu verändern, welche die Wechselbeziehung zwischen apoptotischen Ereignissen und induziertem DNA-Schaden bestimmen. Im ersten Ansatz wurde die Apoptose vorübergehend durch Pifithrin (PFT-α), einen p53-Blocker, verhindert. So wurde der Einfluss verschiedener p53-Zustände (Wildtyp, mutiert und knock-out) auf DNA-Reparatur, den Zellzyklus und Apoptose untersucht. Der zweite Ansatz bestand aus einer vorübergehenden Transfektion mit bcl-2 Antisense Oligonukleotiden zur Reduktion der Bcl-2-Expression. Der dritte Weg war eine stabile Transfektion des bcl-2-Gens in eine estrogenrezeptorhaltigen Zelllinie. Dies ermöglichte den Einfluss von β-Estradiol-induzierter Zellproliferation zu untersuchen. KW - Apoptosis KW - DNS-Schädigung KW - Kleinkern KW - Tumorzelle KW - Apoptose KW - DNA Schaden KW - Micronucleus KW - p53 KW - Bcl-2 KW - Apoptosis KW - DNA damage KW - Micronuclei KW - p53 KW - Bcl-2 Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10605 ER - TY - THES A1 - Brink, Andreas T1 - The biological significance of chemically-induced DNA adducts in relation to background DNA damage T1 - Die biologische Bedeutung von chemisch induzierten DNA-Addukten in Relation zum Hintergrund-DNA-Schaden N2 - No abstract available KW - DNS-Schädigung KW - DNS-Strangbruch KW - HPLC-MS KW - API-Massenspektrometrie KW - LC-MS KW - Gentoxikologie KW - Mutagenitätstest KW - Dosis-Wirkungs-Beziehung KW - DNA-Addukte KW - Dosis-Wirkungs-Beziehung KW - Hintergrund-DNA-Schaden KW - Comet assay KW - DNA adducts KW - Dose response relationships KW - Background DNA damage Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23850 ER - TY - THES A1 - Jonas, René T1 - Arsen-induzierte Zyto- und Gentoxizität sowie deren Modulation T1 - Arsenite-induced cyto- and genotoxicity and their modulation N2 - Arsen ist dafür bekannt, dass es mutagen und kanzerogen wirkt und ein gentoxisches Potential besitzt. Die Mechanismen, durch die diese Effekte ausgeübt werden, sind noch nicht vollständig aufgeklärt. Es konnte jedoch gezeigt werden, dass Parameter, die mit der Freisetzung reaktiver Sauerstoffspezies (ROS), z.B. Superoxiddismutaseaktivität und Hämoxygenase-Genexpression, und Veränderungen des epigenetischen Musters der DNA, z.B. Depletion von S-Adenosylmethionin, in Zusammenhang stehen, durch Arsen beeinflusst werden. In dieser Studie wurde versucht, das gentoxische Potential von Arsen mit Hilfe des Comet Assay, eines Standard-Gentoxizitätstests, zu charakterisieren sowie zu prüfen, ob dieser Test eine geeignete Messmethode für die gentoxische Wirkung von Arsen darstellt. Dies wurde unter Heranziehung verschiedener additiver Messgrößen wie der Vitalität und der Proliferation sowie der parallelen Quantifizierung der Mitose-, C-Mitose-, Mikrokern- und Apoptosefrequenzen der verwendeten murinen L5178Y-Zellen durchgeführt. Des Weiteren wurde der den Arsen-bedingten DNA-Schäden zugrundeliegende Mechanismus genauer beleuchtet. Unter Zuhilfenahme verschiedener Modulatoren wurden durch Arsen induzierter oxidativer Stress und durch Arsen induzierte Veränderung der epigenetischen DNA-Struktur untersucht. Ferner wurde geprüft, inwieweit die Inhibition von oxidativem Stress und Hypomethylierung der DNA zur Verringerung von potenziellen Folgen wie der Entstehung unnatürlicher Mitosemorphologien und chromosomaler Aberrationen beitragen können, die wiederum eventuell in der Entstehung von Karzinomen resultieren können. Für die Modulation der Freisetzung von ROS wurden als prooxidative Substanz 4-Nitrochinolin-1-Oxid und als Antioxidantien Benfotiamin (Vitamin-B1-Prodrug), N-Acetylcystein (NAC) und α-Tocopherol (Vitamin E) ausgewählt. Das Methylierungs¬muster der DNA sollte durch das hypomethylierende Agens 5-Azacytidin und durch die potenziell hypermethylierenden Verbindungen S-Adenosylmethionin (SAM) und Folat beeinflusst werden. Die Untersuchungen bezüglich des gentoxischen Potentials von Arsen und die Eignung des Comet Assay für dessen Quantifizierung ergaben, dass unter Miteinbeziehung der erwähnten additiven Parameter und der Quantifizierung nach Behandlung mit unterschiedlichen Arsen-Konzentrationen nach unterschiedlich langen Behandlungszeiten die im Comet Assay erzielten Werte als korrekt und zuverlässig angesehen werden können. Des Weiteren zeigten die Untersuchungen der Freisetzung von ROS und der Veränderung des DNA-Methylierungsmusters mit Hilfe von Modulatoren, dass beide Mechanismen an den Arsen-induzierten Effekten beteiligt sind. Nicht nur konnte mit Hilfe der Modulatoren jeweils die Inhibition der Freisetzung von ROS und der DNA-Hypomethylierung erreicht werden, es konnte zudem gezeigt werden, dass die Substanzen auch die Reduktion der erhöhten Anzahl unnatürlicher Mitosemorphologien und chromosomaler Aberrationen bewirkten. Dieser Zusammenhang konnte in dieser Studie zum ersten Mal aufgezeigt werden und könnte im Hinblick auf die potenzielle Erniedrigung der Krebsinzidenzen durch Supplementierung der Bevölkerung in Gebieten mit Arsen-belastetem Trinkwasser mit den genannten Modulatoren von Bedeutung sein. N2 - Arsenite is known to be mutagenic as well as carcinogenic and is further known to have a genotoxic potency. However, the mechanisms by which these effects are exerted is not yet fully understood. It could be shown, that parameters which are linked to the release of reactive oxygen species e. g. increase activity of superoxide dismutase or increased expression of heme oxygenase or which are linked to changes in the epigenetic pattern of the DNA, like for example depletion of S-adenosylmethionine, are affected by arsenite. In the course of this study, we attempted to characterize the genotoxic potential of sodium arsenite with the aid of the comet assay, a standard genotoxicity test, and to examine, whether this test is a suitable method for the quantification of arsenite-induced genotoxicity. Additionally, parameters like the frequencies of mitoses, C-mitoses, micronuclei and apoptoses were evaluated in murine L5178Y-cells. Furthermore, the mechanism underlying the arsenite-induced DNA-damage was investigated. With the aid of several modulators, arsenite-induced oxidative stress and arsenite-induced epigenetic modifications were examined. In addition we analyzed, to which extent the inhibition of oxidative stress and DNA-hypomethylation can contribute to a decrease in pathologic mitosis morphologies and chromosomal aberrations, which in turn could possibly result in cancer development. For the modulation of the release of reactive oxygen species, the pro-oxidative substance 4-nitroquinoline-1-oxide and the antioxidative substances benfotiamine, N-acetylcysteine and α-tocopherol were chosen. The epigenetic pattern of the DNA was meant to be affected by the hypomethylating agent 5-azacytidine and the hypermethylating agents S-adenosylmethionine and folic acid. The experiments concerning the genotoxicity of arsenite and the suitability of the comet assay to quantify this genotoxic capacity revealed, that if the parameters mentioned above and different concentrations of arsenite and different incubation times were taken into consideration, the results gained with the aid of the comet assay can be considered as correct and reliable. Furthermore, the investigation of the release of reactive oxygen species and modifications of the DNA methylation patters with the aid of modulators showed, that both mechanisms are involved in the effects induced by sodium arsenite. The modulators were able to inhibit the release of reactive oxygen species and hypomethylation of the DNA respectively. In addition a decrease in the frequencies of pathologic mitosis morphologies and chromosomal aberrations could be shown. This connection could be shown for the first time in the course of this study and could be of relevance with regard to a possible decrease of the incidence of cancer by supplementation of populations with the introduced modulators in areas with drinking water contaminated with arsenite. KW - Oxidativer Stress KW - Methylierung KW - DNS-Reparatur KW - DNS-Schädigung KW - DNS-Strangbruch KW - DNS-Doppelstrangbruch KW - DNS KW - Arsen KW - oxidative stress KW - methylation KW - dna damage KW - arsenite KW - dna strand break Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28772 ER - TY - THES A1 - Queisser, Nina T1 - Oxidative and nitrosative stress induced by the mineralocorticoid aldosterone - Mechanism of induction and role of signal transduction pathways and transcription factors T1 - Oxidativer und nitrosativer Stress induziert durch das Mineralocorticoid Aldosteron - Mechanismen der Induktion und Rolle von Signalwegen und Transkriptionsfaktoren N2 - Several epidemiological studies found that hypertensive patients have an increased risk to develop kidney cancer. Hyperaldosteronism frequently results in arterial hypertension and contributes to the development and progression of kidney injury, with reactive oxygen species (ROS) playing an important role. ROS are thought to be associated with many pathological conditions such as cancer and other disorders, like cardiovascular complications , which often go along with hypertension. The aim of the present work was to investigate whether the effects of elevated aldosterone concentrations might be involved in the increased cancer incidence of hypertensive individuals. First, the potential capacity of aldosterone to induce oxidative stress and DNA damage was investigated in vitro and in vivo. In LLC-PK1 porcine kidney cells and MDCK canine kidney cells the significant formation of ROS, and especially of superoxide (O2˙ˉ) was assessed. With two genotoxicity tests, the comet assay and the micronucleus frequency test, the DNA damaging potential of aldosterone was quantified. In both genotoxicity tests a dose-dependent increase in aldosterone-induced structural DNA damage was observed. Oxidative stress and DNA damage were prevented by antioxidants, suggesting ROS as a major cause of DNA damage. Furthermore, the oxidatively modified DNA lesion 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG), was found to be significantly elevated. In kidneys of rats with desoxycorticosterone acetate (DOCA)/salt-induced hypertension, which is a model of severe mineralocorticoid-dependent hypertension, elevated levels of ROS and superoxide were found, compared to kidneys of sham rats. Also DNA strand breaks, measured with the comet assay and double strand breaks, visualized with antibodies against the double strand break-marker gamma-H2AX were significantly elevated in kidneys of DOCA/salt-treated rats. In addition, significantly increased amounts of 8-oxodG were detected. Proliferation of kidney cells was found to be increased, which theoretically enables the DNA damage to manifest itself as mutations, since the cells divide. Second, the effects of aldosterone on the activation of transcription factors and signaling pathways were investigated. A significant activation of the potentially protective transcription factor Nrf2 was observed in LLC-PK1 cells. This activation was triggered by an increase of ROS or reactive nitrogen species (RNS). In response to oxidative stress, glutathione synthesis and detoxifying enzymes, such as the subunits of the glutathione-cysteine-ligase or heme oxygenase 1 were rapidly induced after 4 h. Nevertheless, after 24 h a decrease of glutathione levels was observed. Since ROS levels were still high after 24 h, but Nrf2 activation decreased, this adaptive survival response seems to be transient and quickly saturated and overwhelmed by ROS/RNS. Furthermore, Nrf2 activation was not sufficient to protect cells against oxidative DNA damage, because the amounts of double strand breaks and 8-oxodG lesions steadily rose up to 48 h of aldosterone treatment. The second transcription factor that was time- and dose-dependently activated by aldosterone in LLC-PK1 and MDCK cells was NF-kappaB. Furthermore, a significant cytosolic and nuclear activation of ERK was detected. Aldosterone induced the phosphorylation of the transcription factors CREB, STAT1 and STAT3 through ERK. Third, the underlying mechanisms of oxidant production, DNA damage and activation of transcription factors and signaling pathways were studied. Aldosterone exclusively acted via the MR, which was proven by the MR antagonists eplerenone, spironolactone and BR-4628, whereas the glucocorticoid receptor (GR) antagonist mifepristone did not show any effect. Furthermore, aldosterone needed cytosolic calcium to exert its negative effects. Calcium from intracellular stores and the influx of calcium across the plasma membrane was involved in aldosterone signaling. The calcium signal activated on the one hand, the prooxidant enzyme complex NAD(P)H oxidase through PKC, which subsequently caused the generation of O2˙ˉ. On the other hand, nitric oxide synthase (NOS) was activated, which in turn produced NO. NO and O2˙ˉ can react to the highly reactive species ONOO- that can damage the DNA more severely than the less reactive O2˙ˉ. In the short term, the activation of transcription factors and signaling pathways could be a protective response against aldosterone-induced oxidative stress and DNA damage. However, a long-term NF-B and ERK/CREB/STAT activation by persistently high aldosterone levels could unfold the prosurvival activity of NF-kappaB and ERK/CREB/STAT in aldosterone-exposed cells. DNA damage caused by increased ROS might become persistent and could be inherited to daughter cells, probably initiating carcinogenesis. If these events also occur in patients with hyperaldosteronism, these results suggest that aldosterone could be involved in the increased cancer incidence of hypertensive individuals. N2 - Mehrere epidemiologische Studien haben ein erhöhtes Nierenkrebsrisko bei Patienten mit Bluthochdruck aufgedeckt. Hyperaldosteronismus führt oft zu arteriellem Bluthochdruck und trägt zur Entwicklung und zum Fortschreiten von Nierenschäden bei, wobei reaktive Sauerstoffspezies (ROS) eine wichtige Rolle spielen. Immer häufiger werden ROS mit Krankheitsbildern wie Krebs und kardiovaskulären Erkrankungen, die mit Bluthochdruck einhergehen, in Verbindung gebracht. Das Ziel dieser Arbeit war es, zu untersuchen, ob erhöhte Aldosteronkonzentrationen an dem gesteigerten Krebsrisiko von hypertensiven Patienten beteiligt sein könnten. Zunächst wurde die potentielle Kapazität von Aldosteron, oxidativen Stress und DNA-Schaden in vitro und in vivo induzieren zu können, untersucht. In der Schweine-Nierenzelllinie LLC-PK1 und der Hunde-Nierenzelllinie MDCK wurde die Entstehung von ROS und speziell die Bildung von Superoxid (O2˙ˉ) nachgewiesen. Das gentoxische Potential von Aldosteron wurde mit zwei Genotoxizitätstests, dem Comet Assay und dem Mikrokernfrequenztest bestimmt. In beiden Genotoxizitätstests konnte ein dosis-abhängiger Anstieg des strukturellen DNA-Schadens beobachtet werden. Antioxidantien konnten den oxidativen Stress und die DNA-Schäden verringern, was annehmen lässt, dass ROS die Hauptursache für die Entstehung der DNA-Schäden sind. Darüberhinaus wurden signifikant erhöhte Mengen der oxidativ modifizierten DNA Läsion 8-Oxo-7,8-dihydro-2´-deoxyguanosin (8-oxodG) gefunden. In Nieren von Ratten mit Desoxycorticosteron-Acetat (DOCA) und Salz-induziertem Bluthochdruck, ein Modell für massiven Mineralocorticoid-induzierten Bluthochdruck, wurde ebenfalls eine erhöhte Bildung von ROS und O2˙ˉ in Nieren von DOCA/Salz-Ratten im Vergleich zu Sham-Ratten beobachtet. Auch im Comet Assay erfasste DNA-Strangbrüche und Doppelstrangbrüche, die mit Hilfe von Antikörpern gegen den Doppelstrangbruchmarker gamma-H2AX sichtbar gemacht wurden, waren in den Nieren der DOCA/Salz-behandelten Ratten signifikant erhöht. Weiterhin wurden erhöhte 8-oxodG-Spiegel in DOCA/Salz-Ratten beobachtet. Auch eine erhöhte Proliferationsrate in DOCA/Salz-behandelten Ratten konnte festgestellt werden, was theoretisch dazu führen könnte, dass sich die DNA-Schäden als Mutationen manifestieren, da sich die Zellen teilen. Im zweiten Teil der Arbeit wurde der Einfluss von Aldosteron auf die Aktivierung von Transkriptionsfaktoren und Signalwegen untersucht. Zunächst konnte die Aktivierung des potentiell schützenden Transkriptionsfaktors Nrf2 in LLC-PK1 Zellen mittels electrophoretic mobility shift assay (EMSA) beobachtet werden. Diese Aktivierung wurde durch den Anstieg an ROS und reaktiven Stickstoffspezies (RNS) ausgelöst. Als Antwort auf den oxidativen Stress, wurde die Glutathion-Synthese und detoxifizierende Enzyme, wie die Untereinheiten der Glutathion-Cystein-Ligase oder Hämoxygenase 1, nach 4 Stunden rasch hochreguliert. Nichtsdestotrotz konnte nach 24 Stunden eine Abnahme des Glutathionspiegels festgestellt werden. Da die Konzentration an ROS nach 24 Stunden immer noch signifikant erhöht war, die Aktivierung von Nrf2 allerdings stark zurückgegangen ist, scheint diese adaptive Überlebensstrategie nur kurzfristig, und somit schnell durch ROS/RNS gesättigt zu sein. Weiterhin war die Aktivierung von Nrf2 nicht ausreichend, um die Zellen vor dem durch Aldosteron-induzierten DNA-Schaden zu schützen, da Doppelstrangbrüche, sowie 8-oxodG-Läsionen bei bis zu 48-stündiger Inkubation mit Aldosteron stetig anstiegen. Der zweite Transkriptionsfaktor, der zeit- und dosisabhängig durch Aldosteron aktiviert wurde, war NF-kappaB. Ausserdem wurde die cytosolische und nukleäre Aktivierung von ERK nachgewiesen. Aldosteron induzierte weiterhin die Phosphorylierung der Transkriptionsfaktoren CREB, STAT1 und STAT3 durch ERK. Im dritten Teil dieser Arbeit wurden die zugrundeliegenden Mechanismen der Entstehung von ROS/RNS, des DNA-Schadens und der Aktivierung von Transkriptionsfaktoren untersucht. Aldosteron wirkte ausschließlich über den MR, bewiesen durch Einsatz der MR-Antagonisten Eplerenon, Spironolakton und BR-4628. Der Glucocorticoid-Rezeptor-Antagonist Mifepriston zeigte dagegen keinen Effekt. Weiterhin benötigte Aldosteron cytosolisches Calcium, um seine negativen Effekte auszuüben. Es waren intrazelluäres Calcium, sowie ein Calciuminflux über die Plasmamembran am Aldosteronsignal beteiligt. Einerseits wurde der prooxidative Enzymkomplex NAD(P)H-Oxidase von Calcium durch die Proteinkinase C (PKC) aktiviert, was wiederum zur Bildung von O2˙ˉ führte. Andererseits kam es durch erhöhtes cytosolisches Calcium zur Aktivierung der NO-Synthase (NOS), welche daraufhin Stickoxid (NO) produzierte. NO und O2˙ˉ können zu dem hochreaktiven Peroxynitrit (ONOO-) reagieren, welches die DNA mehr schädigen kann als das etwas weniger reaktive O2˙ˉ. Kurzfristig könnte die Aktivierung der Transkriptionsfaktoren und Signalwege eine schützende Wirkung gegen den durch Aldosteron-induzierten oxidativen Stress und DNA-Schaden in den Zellen haben. Allerdings kann eine länger anhaltende Aktivierung von NF-kappaB und ERK/CREB/STAT durch permanent hohe Aldosteronspiegel zur Induktion einer Überlebensstrategie durch NF-kappaB und ERK/CREB/STAT in Aldosteron-exponierten Zellen führen. Der DNA-Schaden, der durch erhöhte ROS-Spiegel entsteht, könnte persistent und somit an Tochterzellen weitervererbt werden, was eventuell zur Entstehung von Krebs beitragen könnte. Falls diese Effekte auch in Patienten mit Hyperaldosteronismus gefunden werden können, dann könnte Aldosteron an der erhöhten Krebsinzidenz bei Bluthochdruck beteiligt sein. KW - Aldosteron KW - Oxidativer Stress KW - DNS-Schädigung KW - NADPH-Oxidase KW - Stickstoffoxidsynthase KW - Aldosteron KW - Oxidativer Stress KW - Nitrosativer Stress KW - DNA-Schaden KW - Transkriptionsfaktoren KW - aldosterone KW - oxidative stress KW - nitrosative stress KW - DNA damage KW - transcription factors Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53566 ER - TY - THES A1 - Fazeli, Gholamreza T1 - Signaling in the induction of genomic damage by endogenous compounds T1 - Signalwege bei der Induktion von Genomschäden durch endogene Substanzen N2 - Reactive oxygen species (ROS) are continuously generated in cells and are involved in physiological processes including signal transduction but also their damaging effects on biological molecules have been well described. A number of reports in the literature implicate excessive oxidative stress and/or inadequate antioxidant defense in the pathogenesis of cancer, atherosclerosis, chronic and age related disorders. Several studies have indicated that activation of the renin-angiotensin-aldosterone-system can lead to the formation of ROS. Epidemiological studies have revealed higher renal cell cancer incidences and also higher cancer mortalities in hypertensive individuals. Recently, our group has shown that perfusion of the isolated mouse kidney with Ang II or treatment of several cell lines with Ang II leads to formation of DNA damage and oxidative base modifications. Here, we tried to scrutinize the pathway involved in genotoxicity of Ang II. We confirmed the genotoxicity of Ang II in two kidney cell lines of human origin. Ang II treatment led to the production of superoxide anions which we could hinder when we used the membrane permeable superoxide dismutase (SOD) mimetic TEMPOL. One of the enzymes which is activated in the cells after Ang II treatment and is able to produce ROS is NADPH oxidase. We demonstrated the activation of NADPH oxidase in response to Ang II by upregulation of its p47 subunit using RT-PCR. Also, pPhosphorylation of p47 subunit of NADPH oxidase after Ang II treatment was enhanced. Using two inhibitors we showed that NADPH oxidase inhibition completely prevents DNA damage by Ang II treatment. To differentiate between Nox2 and Nox4 isoforms of NADPH oxidase subunits in the genotoxicity of Ang II, we performed siRNA inhibition and found a role only for Nox4, while Nox2 was not involved. Next, we investigated PKC as a potential activator of NADPH oxidase. We showed that PKC becomes phosphorylated after Ang II treatment and also that inhibition of PKC hinders Ang II from damaging the cells. Our results from using several inhibitors of different parts of the pathway revealed that PKC activation in this pathway is dependent on the action of PLC on membrane phospholipids and production of IP3. IP3 binds to its receptor at endoplasmic reticulum (ER), opening a channel which allows calcium efflux into the cytoplasm. In this manner, both ER calcium stores and extracellular calcium cooperate so that Ang II can exert its genotoxic effect. PLC is activated by AT1R stimulation. We could also show that the genotoxicity of Ang II is mediated via AT1R signaling using the AT1R antagonist candesartan. In conclusion, here we have shown that Ang II is able to damage genomic damage in cell lines of kidney origin. The observed damage is associated with production of ROS. A decrease in Ang II-induced DNA damage was observed after inhibition of G-proteins, PLC, PKC and NADPH oxidase and interfering with intra- as well as extracellular calcium signaling. This leads to the following preliminary model of signaling in Ang II-induced DNA damage: binding of Ang II to the AT1 receptor activates PLC via stimulation of G-proteins, resulting in the activation of PKC in a calcium dependent manner which in turn, activates NADPH oxidase. NADPH oxidase with involvement of its Nox4 subunit then produces reactive oxygen species which cause DNA damage. Dopamine content and metabolism in the peripheral lymphocytes of PD patients are influenced by L-Dopa administration. The PD patients receiving a high dose of L-Dopa show a significantly higher content of dopamine in their lymphocytes compared to PD patients who received a low dose of L-Dopa or the healthy control. Central to many of the processes involved in oxidative stress and oxidative damage in PD are the actions of monoamine oxidase (MAO), the enzyme which is responsible for the enzymatic oxidation of dopamine which leadsing to production of H2O2 as a by-product. We investigated whether dopamine oxidation can cause genotoxicity in lymphocytes of PD patents who were under high dose L-Dopa therapy and afterward questioned the occurrence of DNA damage after dopamine treatment in vitro and tried to reveal the mechanism by which dopamine exerts its genotoxic effect. The frequency of micronuclei in peripheral blood lymphocytes of the PD patients was not elevated compared to healthy age-matched individuals, although the formation of micronuclei revealed a positive correlation with the daily dose of L-Dopa administration in patients who received L-Dopa therapy together with dopamine receptor agonists. In vitro, we describe an induction of genomic damage detected as micronucleus formation by low micromolar concentrations in cell lines with of different tissue origins. The genotoxic effect of dopamine was reduced by addition of the antioxidants TEMPOL and dimethylthiourea which proved the involvement of ROS production in dopamine-induced DNA damage. To determine whether oxidation of dopamine by MAO is relevant in its genotoxicity, we inhibited MAO with two inhibitors, trans-2-phenylcyclopropylamine hydrochloride (PCPA) and Ro 16-6491 which both reduced the formation of micronuclei in PC-12 cells. We also studied the role of the dopamine transporter (DAT) and dopamine type 2 receptor (D2R) signaling in the genotoxicity of dopamine. Inhibitors of the DAT, GBR-12909 and nomifensine, hindered dopamine-induced genotoxicity. These results were confirmed by treatment of MDCK and MDCK-DAT cells, the latter containing the human DAT gene, with dopamine. Only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of D2R with quinpirole in the absence of dopamine did not induce genotoxicity in PC-12 cells, interference with D2R signaling using D2R antagonist and inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D2R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. Overall, the neurotransmitter dopamine causes DNA damage and oxidative stress in vitro. There are also indications that high dose L-Dopa therapy might lead to oxidative stress. Dopamine exerts its genotoxicity in vitro upon transport into the cells and oxidization oxidation by MAO. Transport of dopamine by DAT has the central role in this process. D2R signaling is involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake. We provided evidences for receptor-mediated genotoxicity of two compounds with different mechanism of actions. The involvement of these receptors in many human complications urges more investigations to reveal whether abnormalities in the endogenous compounds-mediated signaling can play a role in the initiation of new conditions like carcinogenesis. N2 - Reaktive Sauerstoffspezies (ROS) werden kontinuierlich in Zellen generiert und sind an physiologischen Prozessen wie der Signaltransduktion beteiligt. Aber auch ihre schädigenden Auswirkungen auf biologische Moleküle sind seit langem bekannt. Eine Reihe von Literaturberichten sieht einen Zusammenhang zwischen übermäßigem oxidativen Stress oder einer unzureichenden antioxidativen Verteidigung und Krebs, Atherosklerose und chronischen bzw. altersbedingten Erkrankungen. Mehrere Studien haben belegt, dass die Aktivierung des Renin-Angiotensin-Aldosteron-Systems zur Bildung von ROS führen kann. Epidemiologische Studien haben gezeigt, dass Nierenkarzinom-Inzidenzen und -Mortalitäten bei Hypertonikern erhöht sind. Vor kurzem konnte unsere Gruppe zeigen, dass die Perfusion von isolierten Maäusen-Nieren und dieoder Behandlung mehrerer Zelllinien mit Angiotensin II (Ang II) zur Bildung von DNA-Schäden und oxidativen Basenmodifikationen führt. Ziel der vorliegenden Arbeit war es, die Signalwege der Genotoxizität von Ang II zu bestimmen. Wir bestätigten dDie Genotoxiziät von Ang II in zwei Nieren-Zelllinien humaner Herkunft konnte bestätigt werden. Wir zeigten, dass Ang II-Behandlung zur Produktion von Superoxid-Anionen führt, die durch das membrangängige Superoxid-Dismutase-Mimetikum TEMPOL verhindert werden kann. Eines der Enzyme, das in den Zellen nach Ang II-Behandlung aktiviert wird und ROS produzieren kann, ist die NADPH-Oxidase. Die mittels RT-PCR gemessene Hochregulierung von p47 beweist die Aktivierung der NADPH-Oxidase nach Ang II-Behandlung. Auch die Phosphorylierung von p47 nach Ang II-Behandlung wurde gesteigert. Mittels zweier Inhibitoren zeigten wir, dass NADPH-Oxidase-Hemmung DNA-Schäden durch Ang II-Behandlung vollständig verhindert. Wir versuchten, die Rolle der Nox2- und Nox4-Isoformen der NADPH-Oxidase-Untereinheiten bei der Genotoxizität von Ang II zu differenzieren. Hemmung mittels siRNA bestätigte nur eine Beteiligung der Nox4. Anschließend überprüften wir die Rolle der PKC als potentiellem Aktivator der NADPH-Oxidase. Wir zeigten, dass die PKC nach Ang II-Behandlung PKC phosphoryliert wird und durch die Hemmung der PKC Ang II-induzierten Schäden verhindert werdenird. Die Verwendung mehrerer Inhibitoren der verschiedenen Teile des Signalweges zeigte, dass die PKC-Aktivierung von der Reaktion der PLC mit Membranphospholipiden und der Produktion von IP3 und DAG abhängig ist. IP3 bindet an seinen Rezeptor am Endoplasmatischen Retikulum (ER)., dDie in der Folge auftretende Öffnung eines Kanals ermöglicht einen Calcium-Ausstrom in das Cytoplasma. Auf diese Weise sind sowohl ER-Calcium als auch extrazelluläres Calcium an der Ang II-induzierten genotoxische Wirkung beteiligt. PLC wird durch AT1R-Stimulation aktiviert. Wir konnten mit Hilfe des AT1R-Antagonisten Candesartan auch zeigen, dass die Genotoxizität von Ang II über AT1R-Signaltransduktion vermittelt wird. Zusammenfassend haben wir gezeigt, dass Ang II genomische Schäden in humanen Nieren-Zelllinien verursacht. Die Schäden sind mit der Produktion von ROS verbunden. Eine Reduktion der Ang II-induzierten DNA-Schäden wurde nach Hemmung vonder G-Proteinen, der PLC, PKC und NADPH-Oxidase und Beeinflussung intra- sowie extrazellulärer Calium-Signalgebung gezeigt. Dies führt zu folgendem vorläufigen Modell der Signaltransduktion der von Ang II-induzierten DNA-Schäden: Die Bindung von Ang II an den AT1-Rezeptor aktiviert die PLC durch Stimulationerung der G-Proteine und die PKC in Calcium-abhängiger Weise, dies wiederum aktiviert die NADPH-Oxidase. Die NADPH Oxidase unter Beteiligung ihrerseiner Nox4-Untereinheit erzeugt dann reaktive Sauerstoffspezies, die DNA-Schäden verursachen. Dopamingehalt und -stoffwechsel in peripheren Lymphozyten von Parkinson-Patienten werden durch L-Dopa-Gabe beeinflusst. Die Patienten, die eine hohe Dosis L-Dopa erhalten, zeigen einen signifikant höheren Gehalt an Dopamin in den Lymphozyten im Vergleich zu Patienten, die eine niedrige Dosis L-Dopa erhalten oder der gesunden Kontrollgruppe. Im Mittelpunkt vieler Prozesse bei der Entstehung von oxidativem Stress und oxidativer Schäden bei Parkinson-Patienten steht die Monoaminoxidase (MAO), die für die enzymatische Oxidation von Dopamin und in der Folge für die Entstehung von H2O2 verantwortlich ist. Wir untersuchten, ob die Oxidation von Dopamin genotoxische Wirkung in Lymphozyten von Parkinson-Patienten mit hochdosierter L-Dopa-Therapie induzieren kann. Danach überprüftenfragten wir, ob die Behandlung mit Dopamin in vitro DNA-Schäden induzieren kann und versuchten aufzuzeigen, durch welchen Mechanismus Dopamin seine genotoxische Wirkung entfaltet. Die Häufigkeit von Mikrokernen in peripheren Lymphozyten der Parkinson-Patienten war nicht erhöht im Vergleich zur gesunden Kontrollgruppe, allerdings zeigte die Mikrokernfrequenz eine positive Korrelation mit der täglichen L-Dopa-Dosis bei Patienten, die eine L-Dopa-Therapie zusammen mit einem Dopamin-Rezeptor-Agonisten erhielten. In vitro beobachteten wir bei niedrigen mikromolaren Konzentrationen eine Induktion des genomischen Schadens in Zelllinien, die aus verschiedenen Geweben stammten. Die genotoxische Wirkung von Dopamin wurde durch Zugabe der Antioxidantien TEMPOL und DMTU reduziert, wodurch die Beteiligung von ROS gezeigt werden konnte. Um festzustellen, ob die Oxidation von Dopamin durch MAO für die Genotoxizität relevant ist, hemmten wir MAO mit zwei Inhibitoren, trans-2-Phenylcyclopropylamin-Hydrochlorid (PCPA) und Ro 16-6491, die beide die Bildung von Mikrokernen in PC-12-Zellen reduzieren konnten. Wir untersuchten auch die Rolle des Dopamin-Transporters (DAT) und Dopamin-Typ-2-Rezeptor (D2R)-assoziierter Signalwege in der Genotoxizität von Dopamin. Die Inhibitoren des DAT, GBR-12909 und Nomifensin verhinderten die Dopamin-induzierte Genotoxizität. Diese Ergebnisse wurden durch Behandlung von MDCK- und MDCK-DAT- Zellen (die das humane DAT-Gen besitzen) mit Dopamin bestätigt. Nur MDCK-DAT-Zellen zeigten erhöhte chromosomale Schäden und Dopaminaufnahme. Obwohl die Stimulation mit dem D2R-Rezeptor-Agonisten Quinpirol in Abwesenheit von Dopamin keine Genotoxizität in PC-12-Zellen induzierte, reduzierten sowohl ein D2R-Antagonist, wie auch Inhibitoren des in der Signalkaskade involvierten G-Proteins, der Phosphoinositol-3-Kinase und der extrazellulären signalregulierten Kinasen die Aufnahme von Dopamin mittels DAT und die Dopamin-vermittelte Genotoxizität. Der D2R-Antagonist Sulpirid hemmte die Dopamin-induzierte Migration von DAT aus dem Cytosol zur Zellmembran. Insgesamt verursacht der Neurotransmitter Dopamin DNA-Schäden und oxidativen Stress in vitro. Es gibt Hinweise, dass eine hochdosierte L-Dopa-Therapie zu oxidativem Stress führt. In vitro führt Dopamin zu Genotoxizität durch den Transport in die Zellen und Oxidation durch MAO. Der Transport von Dopamin durch DAT spielt eine zentrale Rolle in diesem Prozess. Die D2R-Signalwege sind an der Genotoxizität von Dopamin durch Auswirkung auf die Aktivierung und Membranexpression von DAT und damit der Dopaminaufnahme beteiligt. KW - Angiotensin II KW - Mutagenität KW - DNS-Schädigung KW - DNA-Schaden KW - Genotoxizität KW - genotoxicity KW - DNA damage Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55634 ER - TY - THES A1 - Brand, Susanne T1 - Oxidativer Stress und DNA-Schäden induziert durch das Peptidhormon Angiotensin II in vivo : Identifizierung des AT1-Rezeptors und reaktiver Sauerstoffspezies als ursächliche Faktoren T1 - Oxidative Stress and DNA damage mediated via Angiotensin II in vivo N2 - Das Renin-Angiotensin-Aldosteron-System (RAAS) reguliert den Blutdruck und den Wasser- und Elektrolythaushalt des Körpers. Angiotensin II (Ang II), das aktive Peptid des RAAS, bewirkt eine Vasokonstriktion und in höheren Konzentrationen Bluthochdruck. Epidemiologische Studien haben gezeigt, dass eine Verbindung zwischen Hypertonie und dem gehäuften Auftreten von Krebs besteht. Eine Metaanalyse von 13 Fall-Kontroll-Studien konnte einen Zusammenhang zwischen Hypertonie und einem erhöhten Risiko, an einem Nierenzellkarzinom zu erkranken nachweisen. In vitro-Studien und Studien an der isolierten Niere konnten bereits genotoxische Effekte des blutdruckregulierenden Hormons Ang II zeigen. Zielsetzung dieser Arbeit war es, zunächst in vivo zu prüfen, ob steigende Ang II-Konzentrationen einen Einfluss auf die genomische Stabilität von Nieren- und Herzzellen besitzen. Hierzu wurden im Dosisversuch männliche C57BL/6-Mäuse mit osmotischen Minipumpen ausgestattet, die Ang II in vier verschiedenen Konzentrationen zwischen 60 ng/kg min und 1 µg/kg min über einen Zeitraum von 28 Tagen abgeben sollten. Während des Versuchszeitraums fanden regelmäßige, nicht-invasive Blutdruckmessungen an der Maus statt. Die Behandlung mit Ang II führte zu einem signifikanten Anstieg des Blutdrucks und zu histopathologischen Veränderungen der Glomeruli und des Tubulussystems, was sich in einer verschlechterten Albumin-Ausscheidung wiederspiegelte. Außerdem induzierte die Behandlung mit Ang II die dosisabhängige Bildung von reaktiven Sauerstoffspezies, DNA-Doppelstrangbrüchen und oxidativer DNA-Schäden. Diese Parameter waren bereits in Tieren erhöht, die keinen Bluthochdruck entwickelten und stiegen mit der höchsten Ang II-Konzentration noch an, obwohl hier im Vergleich zur Vorgängergruppe, die eine geringere Ang II-Konzentration erhielt, kein höherer Blutdruck vorlag. Diese Beobachtung deutet auf eine mögliche Unabhängigkeit des entstandenen Schadens vom Bluthochdruck hin und lenkt die Aufmerksamkeit auf Ang II als genomschädigenden Faktor. Der folgende Interventionsversuch sollte Aufschluss über die mögliche blutdruckunabhängige genomschädigende Wirkung von Ang II geben. Dazu wurden C57BL/6-Mäuse neben der Ang II-Behandlung in einer Konzentration von 600 ng/kg min zusätzlich über einen Zeitraum von 28 Tagen mit 5 verschiedenen Substanzen behandelt: Candesartan, Ramipril, Hydralazin, Eplerenon und Tempol. Candesartan ist ein Ang II-Rezeptor-Antagonist, der selektiv den AT1-Rezeptor blockiert. Ramipril wirkt als Hemmer des Angiotensin-Konversions-Enzyms und verhindert die Bildung von endogenem Ang II aus Ang I. Hydralazin, als Vasodilatator, greift nicht in das Renin-Angiotensin-Aldosteron-System ein. Eplerenon blockiert als selektiver Aldosteronantagonist den Mineralkortikoidrezeptor. Tempol wirkt als Antioxidans. Die Behandlung mit Ang II in einer Konzentration von 600 ng/kg min im Interventionsversuch führte zur Hochregulierung der NADPH-Oxidase 4 und zur Produktion reaktiver Sauerstoffspezies in der Niere und im kardiovaskulären Gewebe. Der entstandene oxidative Stress führte wiederum zu DNA-Schäden und einer Aktivierung der Transkriptionsfaktoren Nrf2 und NF-B. Nrf2-vermittelt wurde die Induktion antioxidativer Gene ausgelöst, was allerdings nicht ausreichend war, um vor Ang II-induzierten ROS und DNA-Schäden zu schützen. Eine längerfristige NF-B-Aktivierung durch hohe Ang II-Spiegel kann das Überleben und die Proliferation von Zellen, die DNA-Schäden in Form von Doppelstrangbrüchen tragen, fördern, was eine Tumor-initiierende Wirkung haben könnte. Die beschriebenen Effekte erhöhter Ang II-Spiegel konnten durch die Intervention mit dem AT1-Rezeptorblocker Candesartan verhindert werden, was die Beteiligung des Rezeptors nachweist. Eine blutdruckunabhängige, genomschädigende Wirkung von Ang II konnte leider durch die Intervention mit Hydralazin nicht verdeutlicht werden, da die erwünschte langfristige Blutdrucksenkung ausblieb. Allerdings zeigte die Intervention mit Tempol eine Abnahme an oxidativem Stress und DNA-Schäden trotz ausbleibender Blutdrucksenkung. Die Bedeutung von ROS in der Bildung von DNA-Schäden und die Unabhängigkeit dieser Schäden vom Blutdruck konnten somit hervorgehoben werden. Die Tatsache, dass die Intervention mit Ramipril den Blutdruck nicht senken konnte, der oxidative Stress und die DNA-Schäden durch mögliche antioxidative Eigenschaften aber vermindert wurden, unterstützt diese Beobachtung. Die Intervention mit Eplerenon führte zum Teil zu einer Verminderung an ROS und DNA-Schäden, brachte diese Parameter aber nicht auf Kontrollniveau zurück. Somit ist eine Beteiligung von Aldosteron nicht auszuschließen. N2 - The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure, water balance and electrolyte metabolism. Angiotensin II (Ang II), the reactive peptide of RAAS, causes vasoconstriction and, in higher concentrations, increased blood pressure. Epidemiological studies found an increased cancer incidence in hypertensive patients. A meta-analysis of 13 longitudinal studies revealed a connection between hypertension and a higher risk to develop kidney cancer. In vitro studies and studies of the isolated mouse kidney already showed genotoxic effects of Ang II. First, the aim of the study was to investigate in vivo the effect of increasing concentrations of Ang II on the genomic stability of kidney and heart cells. Therefore, male C57/BL6 mice were equipped with osmotic mini pumps, delivering Ang II in four different concentrations between 60 ng/kg min and 1 µg/kg min during 28 days. During the 4 weeks blood pressure was measured non-invasively. Treatment with Ang II raised the blood pressure significantly and led to histopathological changes of glomeruli and tubuli, reflecting an impaired albumin-excretion. Furthermore, the formation of reactive oxygen species (ROS), DNA double strand breaks and oxidative DNA damage was induced dose-dependently by Ang II. These parameters were already increased in animals with normal blood pressure and were further increased by the highest Ang II concentration, although blood pressure was not higher than in the precursor group, which received less Ang II. These observations might hint to a possible independency of the Ang II-induced damage from the blood pressure, focusing on Ang II as the genotoxic substance. The following intervention experiment was conducted to investigate the possible blood pressure independent genotoxic effects of Ang II. Besides the treatment with Ang II in a concentration of 600 ng/kg min, C57BL/6 mice were additionally treated with 5 different interventions: candesartan, an AT1 receptor antagonist, ramipril, a angiotensin-converting-enzyme blocker, hydralazine, a vasodilator, eplerenone, a mineralocorticoid receptor blocker and tempol, an antioxidant. In the intervention experiment, Ang II treatment in a concentration of 600 ng/kg min caused an up-regulation of NOX 4 resulting in the production of ROS in the kidney and heart. The oxidative stress led to the formation of DNA damage and to an activation of the transcription factors Nrf2 and NF-B. The induction of Nrf2 was accompanied by up-regulation of antioxidative enzymes, which, however, were not able to defend against ROS-production and DNA damage. A long-term activation of NF-B by high Ang II levels can promote the survival and proliferation of cells with DNA damage in form of DNA double strand breaks, probably initiating carcinogenesis. The AT1 receptor blocker candesartan could prevent the Ang II-induced damage, demonstrating the involvement of the Ang II receptor. The intervention with hydralazine failed to show a genotoxic effect of Ang II independent of the blood pressure, since a long-term decrease of blood pressure was missing. However, despite of the high blood pressure, the intervention with tempol was able to prevent oxidative stress and DNA-damage. The importance of ROS in the formation of DNA damage and an independency of this damage from the increased blood pressure was shown. The fact that, although not lowering blood pressure, ramipril was able to reduce oxidative stress and DNA damage by possible antioxidative properties, supported this observation. Eplerenone led to slight decrease in ROS and DNA damage showing the possible involvement of aldosterone. Ang II contributes to damage detected in the kidney and in the heart during high blood pressure, probably initiating cancer. The involvement of ROS for the formation of DNA damage and the independency of this damage from the increased blood pressure was shown by the effects of the antioxidant tempol. We could demonstrate that the importance of an AT1 receptor antagonist in the treatment of high blood pressure plays a leading role. Compared to other antihypertensive therapies, treatment with a sartan is the best option. Starting at an early stage with this therapy, a long-term damage, induced by Ang II, could be avoided. KW - Oxidativer Stress KW - Hypertonie KW - DNS-Schädigung KW - Angiotensin II KW - Hypertension KW - DNA-Schäden KW - Angiotensin II KW - oxidativer Stress KW - hypertension KW - DNA-damage KW - Angiotensin II KW - oxidative stress Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77573 ER - TY - THES A1 - Eman, Maher Othman Sholkamy T1 - In Vitro and In Vivo Analysis of Insulin-Induced Oxidative Stress and DNA Damage T1 - In vitro und in vivo Untersuchungen von Insulin-induzierten oxidativen Stress und DNA-Schäden N2 - Hyperinsulinemia, a condition with excessively high insulin blood levels, is related to an increased cancer incidence. Diabetes mellitus, metabolic syndrome, obesity and polycystic ovarian syndrome are the most common of several diseases accompanied by hyperinsulinemia. Since an elevated cancer risk especially for colon and kidney cancers, was reported for those patients, we investigated for the first time the induction of genomic damage by insulin mainly in HT29 (human colon cells), LLC-PK1 (pig kidney cells), HK2 (human kidney cells) and peripheral lymphocytes, and to confirm the genotoxicity of insulin in other cells from different tissues. To ascertain that the insulin effects were not only limited to permanent cell lines, rat primary colon, kidney, liver and fatty tissue cells were also studied. To connect the study and the findings to in vivo conditions, two in vivo models for hyperinsulinemia were used; Zucker diabetic fatty rats in a lean and diabetic state infused with different insulin concentrations and peripheral lymphocytes from type 2 diabetes mellitus patients. First, the human colon adenocarcinoma cells (HT29) showed significant elevation of DNA damage using comet assay and micronucleus frequency analysis upon treatment with 5 nM insulin in standard protocols. Extension of the treatment to 6 days lowered the concentration needed to reach significance to 0.5-1 nM. Insulin enhanced the cellular ROS production as examined by the oxidation of the dyes 2´,7´-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE). The FPG modified comet assay and the reduction of damage by the radical scavenger tempol connected the insulin-mediatedDNA damage to ROS production. To investigate the sources of ROS upon insulin stimulation, apocynin and VAS2870 as NADPH oxidase inhibitors and rotenone as mitochondrial inhibitor were applied in combination with insulin and all of them led to a reduction of the genomic damage. Investigation of the signaling pathway started by evaluation of the binding of insulin to its receptor and to the IGF-1 receptor. The results showed the involvement of both receptors in the signaling mechanism. Following the activation of both receptors, PI3K activation occurs leading to phosphorylation of AKT which in turn activates two pathways for ROS production, the first related to mitochondria and the second through activation of Rac1 , resulting in the activation of Nox1. Both pathways could be activated through AKT or through the mitochondrial ROS which in turn could activates Nox1. Studying another human colon cancer cell line, Caco-2 and rat primary colon cells in vitro confirmed the effect of insulin on cellular chromatin. We conclude that pathophysiological levels of insulin can cause DNA damage in colon cells, which may contribute to the induction or progression of colon cancer. Second, in kidney cells, insulin at a concentration of 5 nM caused a significant increase in DNA damage in vitro. This was associated with the formation of reactive oxygen species (ROS). In the presence of antioxidants, blockers of the insulin and IGF-1 receptors, and a phosphatidylinositol 3-kinases (PI3K) inhibitor, the insulin mediated DNA damage was reduced. Phosphorylation of AKT was increased and p53 accumulated. Inhibition of the mitochondrial and NADPH oxidase related ROS production reduced the insulin mediated damage. In primary rat cells insulin also induced genomic damage. HK2 cells were used to investigate the mechanistic pathway in the kidney The signaling is identical to the one in the colon cells untill the activation of the mitochondrial ROS production, because after the activation of PI3K activation of Nox4 occurs at the same time across talk between mitochondria and Nox4 activation has been suggested and might play a role in the observed effects. In the in vivo model, kidneys from healthy, lean ZDF rats, which were infused with insulin to yield normal or high blood insulin levels, while keeping blood glucose levels constant, the amounts of ROS and p53 were elevated in the high insulin group compared to the control level group. ROS and p53 were also elevated in diabetic obese ZDF rats. The treatment of the diabetic rats with metformin reduced the DNA oxidation measured as 8-oxodG as well as the ROS production in that group. HL60 the human premyelocytic cells and cultured lymphocytes as models for the hemopoietic system cells showed a significant induction for DNA damage upon treatment with insulin. The diabetic patients also exhibited an increase in the micronucleus formation over the healthy individuals. In the present study, we showed for the first time that insulin induced oxidative stress resulting in genomic damage in different tissues, and that the source of the produced ROS differs between the tissues. If the same mechanisms are active in patients, hyperinsulinemia might cause genomic damage through the induction of ROS contributing to the increased cancer risk, against which the use of antioxidants as well as mitochondrial and NADPH oxidase inhibitors might exert protective effects with cancer preventive potential under certain conditions. Normal healthy human plasma insulin concentrations are in the order of 0.04 nM after overnight fasting and increase to less than about 0.2 nM after a meal. Pathophysiological levels can reach 1 nM and can stay above 0.2 nM for the majority of the daytime yielding condictions close to the insulin concentrations determined in the present study. Whether the observed effects also occur in vivo and whether they actually initiate or promote tumor formation remains to be determined. However, if proof of that can be obtained, our experiments with inhibitors indicate chances for pharmacological intervention applying antioxidants or enzyme inhibitors. It will not be the aim to reduce ROS in any case or as much as possible because ROS have now been recognized as important signaling molecules and participatants in immune defense, but a reduction to physiological levels instead of pathophysiological levels in the context of a disease associated with ROS overproduction might be beneficial. N2 - Hyperinsulinämie, ein Zustand mit sehr hohen Blutspiegeln an Insulin, ist mit einer erhöhten Krebsinzidenz verbunden. Diabetes mellitus, das metabolische Syndrom, Adipositas und das polyzystische Ovarialsyndrom sind die häufigsten Krankheiten, die mit Hyperinsulinämie einhergehen. Da ein erhöhtes Krebsrisiko insbesondere für Krebserkrankungen des Dickdarms und der Niere beobachtet wurde, untersuchten wir erstmals die Induktion von Genomschäden durch Insulin in HT29-Zellen (humane Dickdarmzellen), LLC-PK1-Zellen (Nierenzellen vom Schwein), HK2-Zellen (humane Nierenzellen) und peripheren humanen Lymphozyten. Um die Gentoxizität von Insulin zu bestätigen, wurden auch andere Zellen aus unterschiedlichen Geweben untersucht. Um sicherzustellen, dass die Effekte durch Insulin nicht auf permanente Zelllinien beschränkt sind, wurden außerdem primäre Rattenzellen aus Dickdarm, Niere, Leber und Fettgewebe untersucht. Um die Befunde auf die in-vivo-Situation übertragen zu können, kamen zwei Hyperinsulinämie-Modelle zum Einsatz: mit Insulin infundierte ZDF-Ratten (Zucker Diabetic Fatty Rats) und periphere Lymphozyten von Patienten mit Diabetes Typ 2. Zuerst konnte in humanen Adenokarzinomzellen des Dickdarms (HT29) eine signifikante Erhöhung des DNA-Schadens in Standard-Protokollen des Comet Assays und des Mikrokerntests nach Behandlung mit 5 nM Insulin gezeigt werden. Bei Verlängerung der Behandlungszeit auf 6 Tage wurden signifikante Effekte bereits ab 0,5 nM beobachtet. Insulin erhöhte die zelluläre ROS-Produktion, die als Oxidation der Farbstoffe 2‘,7‘-Dichlorodihydrofluoresceindiacetat (H2DCF-DA) und Dihydroethidium (DHE) nachgewiesen wurde. Befunde aus dem FPG-modifizierten Comet Assay und das Ergebnis, dass der Radikalfänger Tempol die Zellen schützte stellen die Verbindung zwischen Insulin-verursachtem DNA-Schaden und ROS produktion her. Um die ROS-Quelle nach Stimulation mit Insulin zu untersuchen, wurden Apocynin und VAS2870 als NADPH-Oxidase-Inhibitoren und Rotenon als Inhibitor der Mitochondrien mit Insulin kombiniert. Alle diese Stoffe reduzierten den Genomschaden. Zur Charakterisierung der Signalwege wurde zunächst die Bindung von Insulin an seinen Rezeptor und an den IGF1-Rezeptor untersucht. Beide Rezeptoren sind an der Signaltransduktion beteiligt. Nach Aktivierung der Rezeptoren wird die PI3K aktiviert, dies führt zur Phosphorylierung von AKT. Dadurch werden zwei Wege zur ROS-Produktion aktiviert, der erste involviert die mitochondriale Atmungskette , der zweite agiert durch Rac1-Aktivierung. Letzteres resultiert in der Aktivierung der NADPH-Oxidase Isoform Nox1. Der Effekt von Insulin auf zelluläres Chromatin konnte in einer weiteren humanen Dickdarmkrebs-Zelllinie und in primären Dickdarmzellen der Ratte in vitro bestätigt werden. Wir schlussfolgern aus diesen Ergebnissen, dass pathophysiologische Insulin-Blutspiegel DNA-Schäden im Dickdarm verursachen können. Dies könnte zur Induktion oder Progression von Dickdarmkrebs beitragen. Weiterhin verursachte Insulin bei einer Konzentration von 5 nM einen signifikanten Anstieg von DNA-Schäden in vitro. Dies war verbunden mit der Bildung von reaktiven Sauerstoffspezies (ROS). Bei Anwesenheit von Antioxidantien, von Inhibitoren des Insulin-Rezeptors bzw. des IGF-1-Rezeptors und eines Phosphatidylinositol-3-Kinase(PI3K)-Inhibitors war der Insulin-vermittelte DNA-Schaden reduziert. Phosphorylierung von AKT war erhöht und das Protein P53 akkumulierte. Inhibierung der ROS-Produktion der Mitochondrien bzw. der NADPH-Oxidase reduzierte den Insulin-vermittelten Schaden. In primären Rattenzellen induzierte Insulin ebenfalls Genomschaden. HK2-Zellen wurden zur Untersuchung der mechanistischen Signalwege in der Niere eingesetzt. Die Signalwege entsprechen denen der Dickdarmzellen bis zur Aktivierung der ROS-Produktion in den Mitochondrien. Als Folge der Aktivierung von PI3K wird Nox4 aktiviert. Eine Verbindung zwischen Mitochondrien und Nox4-Aktivierung wird vorgeschlagen. Als in-vivo-Modell wurden gesunde ZDF-Ratten mit Insulin infundiert, um normale bzw. erhöhte Insulin-Blutspiegel bei konstanten Glukose-Blutspiegeln zu erreichen. In den Nieren war der Gehalt an ROS und an P53 in der Gruppe mit erhöhten Insulin-Blutspiegeln im Vergleich zur Kontrolle erhöht. ROS und P53 waren ebenfalls in den diabetischen und adipösen ZDF-Ratten erhöht. Die Behandlung der diabetischen Ratten mit Metformin reduzierte die DNA-Oxidation, die in Form von 8-oxodG bestimmt wurde, und die ROS-Produktion in dieser Gruppe. HL60-Zellen und kultivierte Lymphozyten als Modelle für das hämatopoetische System zeigten eine signifikante Induktion von DNA-Schäden nach Behandlung mit Insulin. Diabetes-Patienten zeigten eine erhöhte Mikrokern-Bildung im Vergleich zu gesunden Probanden. In der vorliegenden Studie konnten wir erstmals zeigen, dass Insulin-induzierter oxidativer Stress zu Genomschaden führt, und dass in unterschiedlichen Geweben ROS aus verschiedenen Quellen stammten. Falls diese Mechanismen auch in Patienten auftreten, könnte Hyperinsulinämie durch ROS-Induktion zu Genomschaden führen und damit zu einem erhöhten Krebsrisiko beitragen. Unter bestimmten Bedingungen könnten Antioxidantien bzw. Inhibitoren der Mitochondrien oder der NADPH-Oxidase protektive Effekte ausüben. KW - Insulin KW - Oxidativer Stress KW - DNS-Schädigung KW - oxidativer Stress KW - DNA Schaden KW - Insulin KW - Insulin KW - Oxidative Stress KW - DNA Damage Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69274 ER - TY - THES A1 - Zimnol, Anna T1 - Relevance of angiotensin II type 1a receptor and NADPH oxidase for the formation of angiotensin II-mediated DNA damage T1 - Relevanz des Angiotensin II Typ 1a-Rezeptors und der NADPH-Oxidase für die Entstehung Angiotensin II-vermittelter DNA-Schäden N2 - Das Renin-Angiotensin-Aldosteron-System (RAAS) reguliert den Blutdruck sowie den Elektrolyt- und Wasserhaushalt. Das aktive Peptid, Angiotensin II (AngII), führt dabei zur Vasokonstriktion und in höheren Konzentrationen zu Bluthochdruck. Hypertensive Patienten haben ein erhöhtes Risiko an Krebs zu erkranken, vor allem an Nierenkrebs. Wir konnten bereits in vivo zeigen, dass AngII in der Lage ist, den Blutdruck zu steigern und dosisabhängig zu DNA-Schäden über den Angiotensin II Typ 1-Rezeptor (AT1R) führt. Ein stimuliertes RAAS kann ferner über die Aktivierung der NADPH-Oxidase, einer Hauptquelle der Generierung reaktiver Sauerstoffspezies (ROS) in der Zelle, zu oxidativem Stress führen. Zielsetzung dieser Arbeit war es zum einen, mit Hilfe von AT1a-Rezeptor-defizienten Mäusen in vivo zu prüfen, ob die Bildung von ROS, sowie die Bildung von DNA-Schäden in der Niere und im Herzen unabhängig von einem erhöhten Blutdruck auftreten. Zum anderen sollte, ebenfalls in vivo, untersucht werden, ob eine oder beide von zwei untersuchten Isoformen der NADPH-Oxidase (Nox) für die Auslösung oxidativen Stresses in der Niere verantwortlich ist. Zunächst wurden für den Versuch zur Überprüfung der Abhängigkeit AngII-induzierter DNA-Schäden vom Blutdruck männliche C57BL/6-Mäuse und AT1a-Knockout (KO)-Mäuse mit osmotischen Minipumpen ausgestattet, die AngII in einer Konzentrationen von 600 ng/kg min über einen Zeitraum von 28 Tagen abgaben. Zusätzlich wurde eine Gruppe von AngII-behandelten Wildtyp (WT)-Mäusen mit dem AT1-Rezeptor-Blocker Candesartan (Cand) behandelt. Während des Versuchszeitraumes fanden regelmäßige, nicht-invasive Blutdruckmessungen an den wachen Mäusen statt. In WT-Mäusen induzierte AngII Bluthochdruck, verursachte erhöhte Albumin-Level im Urin und führte zur Bildung von ROS in Niere und im Herzen. Außerdem traten in dieser Gruppe DNA-Schäden in Form von Einzel- und Doppelstrangbrüchen auf. All diese Reaktionen auf AngII konnten jedoch durch gleichzeitige Behandlung mit Cand verhindert werden. AT1a-KO-Mäuse hatten, verglichen mit WT-Kontrollmäusen, einen signifikant niedrigeren Blutdruck und normale Albumin-Level im Urin. In AT1a-KO-Mäusen, die mit AngII behandelt wurden, konnte kein Anstieg des systolischen Blutdrucks sowie kein Einfluss auf die Nierenfunktion gefunden werden. Jedoch führte AngII in dieser Gruppe zu einer Steigerung von ROS in der Niere und im Herzen. Zusätzlich wurden genomische Schäden, vor allem in Form von Doppelstrangbrüchen signifikant in dieser Gruppe induziert. Auch wenn AT1a-KO-Tiere, unabhängig von einer AngII-Infusion, keine eingeschränkte Nierenfunktion zeigten, so wiesen sie erhebliche histopathologische Schäden im Hinblick auf die Glomeruli und das Tubulussystem auf. Diese Art von Schäden deuten auf eine besondere Bedeutung des AT1aR im Hinblick auf die embryonale Entwicklung der Niere hin. Zusammenfassend beweisen die Ergebnisse dieses Experiments eindeutig, dass eine AngII-induzierte ROS-Produktion und die Induktion von DNA-Schäden unabhängig von einem erhöhten Blutdruck auftreten. Da in der AngII-behandelten AT1a-KO-Gruppe eine signifikant höhere Expression des AT1b-Rezeptors zu finden war und die Blockade von beiden Rezeptorsubtypen mit Cand zu einer Verhinderung der schädlichen Effekte durch AngII führte, scheint der AT1bR im Falle einer AT1aR-Defizienz für die Entstehung der Schäden zuständig zu sein. Ziel des zweiten Experimentes war es, den Beitrag der Nox2 und Nox4 zum oxidativen DNA-Schaden in vivo zu untersuchen. Hierfür wurden männliche C57BL/6-Mäuse und Nox2- oder Nox4-defiziente Mäuse mit osmotischen Minipumpen ausgestattet, die AngII in einer Konzentration von 600 ng/kg min über einen Zeitraum von 28 Tagen abgaben. Im WT-Stamm und in beiden Nox-defizienten Stämmen induzierte AngII Bluthochdruck, verursachte erhöhte Albumin-Level im Urin und führte zur Bildung von ROS in der Niere. Außerdem waren in allen AngII-behandelten Gruppen genomische Schäden, vor allem in Form von Doppelstrangbrüchen, erhöht. Auch in Abwesenheit von AngII wiesen Nox2- und Nox4-defiziente Mäuse mehr Doppelstrangbrüche im Vergleich zu WT-Kontrollmäusen auf. Interessanterweise kompensieren allerdings weder Nox2 noch Nox4 das Fehlen der jeweils anderen Isoform auf RNA-Basis. Aufgrund dieser Ergebnisse schließen wir, dass bislang keine Isoform alleine für die Generierung von oxidativen DNA-Schäden in der Niere verantwortlich gemacht werden kann und dass eine Beteiligung einer weiteren Nox-Isoform sehr wahrscheinlich ist. Möglicherweise könnten aber auch andere ROS-generierende Enzyme, wie Xanthinoxidase oder Stickoxidsynthase involviert sein. Da genomische Schäden in Nieren von Nox2- und Nox4-defizienten Mäusen in Abwesenheit von AngII gegenüber den Schäden in WT-Kontrollmäusen erhöht waren, könnten die beiden Isoformen auch eine schützende Funktion im Bereich von Nierenkrankheiten übernehmen. Da dies aber bislang nur für Nox4 beschrieben ist, ist es wahrscheinlicher, dass das Fehlen von einer der beiden Isoformen eher einen Einfluss auf die Embryonalentwicklung hat. Um dies jedoch abschließend zu klären wäre es sinnvoll mit induzierbaren Knockout-Modellen zu arbeiten, bei denen mögliche entwicklungsbedingte Effekte minimiert werden können. N2 - The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure, electrolyte metabolism and water balance. The reactive peptide, Angiotensin II (AngII), of the RAAS causes vasoconstriction and, in higher concentrations, increased blood pressure. Hypertensive patients have an increased risk to develop cancer, especially kidney cancer. We have shown in vivo, that AngII is capable to cause an elevation of blood pressure, as well as DNA damage dose-dependently via the AngII type 1 receptor (AT1R). A stimulated RAAS can further lead to oxidative stress by activating NADPH oxidases which are major enzymatic sources of reactive oxygen species (ROS) in the cell. On the one hand the aim of this work was to examine in vivo with the help of AT1aR-deficient mice whether the formation of ROS and DNA damage in the kidney and the heart occur independently of an increased blood pressure. On the other hand we wanted to investigate whether one or both of the two examined isoforms of the NADPH oxidase (Nox) is responsible for the triggering of oxidative stress in the kidney. For the purpose of the first experiment which examined the dependency of AngII-induced DNA damage on blood pressure, male C57BL/6-mice and AT1a-knockout (KO)-mice were equipped with osmotic minipumps, delivering AngII in a concentration of 600 ng/kg x min during 28 days. Additionally, wild-type (WT) mice were treated with the AT1R antagonist candesartan (cand). Over the whole time period, frequent non-invasive blood pressure measurements were taken. In WT mice, AngII induced hypertension, an elevated urinary albumin level and formation of ROS in kidney and heart. Furthermore, genomic damage, in form of single- and double strand breaks, was augmented in this group. All these responses to AngII could be attenuated by concurrent administration of candesartan. AT1a-deficient mice had lower basal systolic pressures than WT mice and comparable urinary albumin levels. In AT1a-deficient mice treated with AngII, systolic pressure was not increased, and no effect on renal function could be detected. However, AngII led to an increase of ROS in kidney and heart in this group. In addition, genomic damage, especially in form of double strand breaks was significantly induced. Although AT1a-KO-mice, independent of an AngII-infusion, showed no renal impairment they had significant histopathological changes in glomeruli and tubules. This points to a special importance of AT1aR with regard to the embryonic development of the kidney. In summary our results clearly demonstrate that AngII-induced ROS production and DNA damage is independent of blood pressure. Since we found a significantly higher expression of the AT1bR in the AngII-treated AT1aR-KO-group and since blocking of both subtypes with cand resulted in a complete prevention of adverse AngII effects, the receptor responsible for the mediation of these effects seems to be AT1bR. The aim of the second experiment was to examine the contribution of Nox2 and Nox4 to oxidative DNA damage in vivo. Therefore male C57BL/6-mice and Nox2- or Nox4-deficient mice were equipped with osmotic minipumps, delivering AngII in a concentration of 600 ng/kg × min during 28 days. In WT and in both strains of Nox-deficient mice, AngII induced hypertension, elevated urinary albumin levels and formation of ROS in the kidney. Furthermore, genomic damage, especially in form of double strand breaks were augmented in all of the AngII-treated groups. Also in the absence of AngII, Nox2- and Nox4-deficient mice exhibited a higher background of double strand breaks. Interestingly neither Nox2 nor Nox4 do not compensate for the deficiency of the other isoform on mRNA level. Due to these results we conclude that there is no isoform so far which is solely responsible for the generation of ROS in the kidney under AngII-treatment. Potentially there might also be a contribution of other enzymes like xanthine oxidase or nitric oxide synthase to the formation of ROS. Since genomic damage in kidneys of Nox2- and Nox4-deficient mice in the absence of AngII was higher as compared to the damages in WT control mice it might be that both isoforms could have a protective role in renal disease. But, since this is so far only described for Nox4 it is likely that the absence of one of the two isoforms rather has an influence on the embryonic development. To finally clarify this hypothesis it would be suggestive to work with inducible knockout mouse models where possible developmental effects can be minimized. KW - Angiotensin II KW - NADPH-Oxidase KW - DNS-Schädigung KW - Oxidativer Stress KW - Angiotensin II KW - NADPH oxidase KW - angiotensin II type 1a receptor KW - DNA damage KW - oxidative stress KW - Angiotensin II Typ 1a-Rezeptor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137469 ER - TY - THES A1 - Kreutzmann, Moritz Paul T1 - Untersuchung von Markern für oxidativen Stress und DNA-Schäden bei arterieller Hypertonie T1 - Investigation of markers for oxidative stress and DNA damage in arterial hypertension N2 - Patienten mit arterieller Hypertonie haben ein erhöhtes Risiko eine Tumorerkrankung, insbesondere Nierenzellkarzinome, zu entwickeln. Die arterielle Hypertonie ist über die Entstehung von oxidativem Stress mit der Entwicklung von DNA-Schäden verknüpft, wobei ein hochreguliertes Renin-Angiotensin-Aldosteron-System (RAAS) eine entscheidende Rolle einnimmt. Das Ziel dieser Arbeit war es zum einen Hypertoniker (HypAll) und gesunde Kontrollen und zum anderen gut (HypGut) und schlecht (HypSch) eingestellte Hypertoniker unter Berücksichtigung der eingenommenen Antihypertensiva bezüglich ihrer Level an oxidativem Stress und DNA-Schäden zu vergleichen. Zusätzlich erfolgte im Rahmen einer Längsschnittanalyse der intraindividuelle Vergleich unter den Hypertonikern. Hierfür erfolgte die Bestimmung von SHp, D-ROM und 3-Nitrotyrosin als Marker für oxidativen Stress im Plasma, von 8-oxodG, 15-F2t-Isoprostan und Malondialdehyd als Marker für oxidativen Stress im Urin und von γ-H2AX und Mikrokernen als Marker für DNA-Schäden in Lymphozyten. Dabei konnte ein erhöhter oxidativer Stress in der HypAll-Gruppe verglichen zu den Kontrollen anhand aller Marker für oxidativen Stress mit Ausnahme von Malondialdehyd festgestellt werden. Nach Altersadjustierung zeigte sich dieser Gruppenunterschied nur noch für die Proteinstressmarker SHp und 3-Nitrotyrosin signifikant. Bezüglich der Marker für DNA-Schäden ergab sich kein Unterschied zwischen HypAll und Kontrollen. Ebenso zeigte sich kein signifikanter Unterschied in den Leveln für oxidativen Stress und DNA-Schäden zwischen der HypGut- und HypSch-Gruppe. Zuletzt konnte im Rahmen der Längsschnittstudie ein positiver Zusammenhang zwischen der Entwicklung des Blutdrucks und des oxidativen Stresses anhand der Veränderung von D-ROM und des systolischen Blutdrucks beobachtet werden. Die teils nicht-signifikanten und teils mangelnden Unterschiede zwischen HypAll und Kontrollen sowie zwischen HypGut und HypSch sind am ehesten durch das besondere Patientengut, welches sich auch grundlegend von dem anderer vergleichbarer Studien unterscheidet, erklärbar. Die Patienten mit therapieresistenter Hypertonie (TRH) zeichnen sich durch eine langjährige Einnahme zahlreicher Antihypertensiva aus. Diese, insbesondere die RAAS-wirksamen, besitzen eine über die reine Blutdrucksenkung hinausgehende antioxidative und antigenotoxische Wirkung, welche vermutlich zu einer Angleichung der Level für oxidativen Stress und DNA-Schäden geführt hat. Um die Dynamik der Biomarker und den Einfluss der Antihypertensiva auf oxidativen Stress und DNA-Schäden besser zu verstehen, sind weitere Studien über einen längeren Beobachtungszeitraum sowie mit zusätzlich therapienaiven Hypertonikern sinnvoll. Die weitere Erforschung von Biomarkern, um sie im klinischen Alltag zur Verbesserung der Patientenbehandlung einsetzen zu können, ist notwendig. N2 - Patients with arterial hypertension are at an increased risk of developing tumors, especially renal cell carcinoma. Arterial hypertension is linked to the development of DNA damage through the development of oxidative stress, with an upregulated renin-angiotensin-aldosterone system (RAAS) playing a decisive role. The aim of this work was to compare 1. hypertensive patients (HypAll) and healthy controls and 2. hypertensive patients with good (HypGut) and poorly (HypSch) adjusted hypertension with regard to their level of oxidative stress and DNA damage. For this purpose, SHp, D-ROM and 3-nitrotyrosine were determined as markers for oxidative stress in plasma, 8-oxodG, 15-F2t-isoprostane and malondialdehyde as markers for oxidative stress in urine and γ-H2AX and micronuclei as markers for DNA damage in lymphocytes. An increased oxidative stress was found in the HypAll group compared to the controls as measured by all markers for oxidative stress with the exception of malondialdehyde. After adjusting for age, this group difference was only significant for the protein stress markers SHp and 3-nitrotyrosine. With regard to the markers for DNA damage, there was no difference between HypAll and controls. Also there was no significant difference in the levels of oxidative stress and DNA damage between the HypGut and HypSch groups. The partly insignificant and partly lacking differences between HypAll and controls as well as between HypGut and HypSch can best be explained by the special patient population, which is also fundamentally different from that of other comparable studies. The patients with therapy-resistant hypertension are characterized by long-term use of numerous antihypertensive drugs. These, especially the RAAS-effective ones, have an antioxidant and antigenotoxic effect that goes beyond the pure lowering of blood pressure. This has presumably led to an equalization of the levels for oxidative stress and DNA damage. In order to better understand the dynamics of the biomarkers and the influence of antihypertensive drugs on oxidative stress and DNA damage, further studies over a longer observation period and with additional therapy-naive hypertensive patients are useful. Further research into biomarkers is necessary so that they can be used in everyday clinical practice to improve patient treatment. KW - Oxidativer Stress KW - DNS-Schädigung KW - Biomarker KW - Hypertonie KW - Mikrokern KW - γ-H2AX Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243380 ER - TY - THES A1 - Soliman, Alexander T1 - Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adipösen Patient*innen nach bariatrischer Chirurgie T1 - Influence of bariatric surgery induced weight loss on oxidative stress and DNA damage in obese patients N2 - Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adipösen Patient*innen nach bariatrischer Chirurgie Adipositas ist eine Erkrankung, die durch ein erhöhtes Krebsrisiko neben zahlreichen anderen Komorbiditäten mit weitreichenden Folgen für die Gesundheit adipöser Patient*innen einhergeht. In der Pathogenese der adipositas-assoziierten Krebsarten sind dabei ein erhöhter oxidativer Stress sowie die damit einhergehende Schädigung der DNS maßgeblich beteiligt. Im Umkehrschluss wurde in der vorliegenden Arbeit der Einfluss eines durch bariatrische Chirurgie induzierten Gewichtsverlusts auf den oxidativen Stress und DNS-Schaden in adipösen Patient*innen anhand von Blutproben präoperativ sowie 6 und 12 Monate postoperativ untersucht. In einer Subpopulation der Patient*innen konnte eine tendenzielle Verringerung des DNS-Schadens anhand des Comet-Assays in peripheren Lymphozyten beobachtet werden. Im Hinblick auf den oxidativen Stress wurde im Plasma die Eisenreduktionsfähigkeit als Maß für antioxidative Kapazität sowie Malondialdehyd als Surrogatmarker für das Ausmaß an Lipidperoxidation bestimmt. Weiterhin wurde in Erythrozyten das Gesamtglutathion und oxidierte Glutathion bestimmt. Die oxidativen Stressparameter zeigten insgesamt nach einer initialen Zunahme im oxidativen Stress 6 Monate postoperativ eine rückläufige Tendenz im oxidativen Stress am Studienende. Somit geben die Beobachtungen dieser Arbeit Anlass zur Hoffnung, dass adipöse Patient*innen durch einen bariatrisch induzierten Gewichtsverlust von einer Verringerung des Krebsrisikos profitieren könnten. N2 - Obesity is a disease that is linked with a higher risk of cancer among other comorbidities of obese patients. Especially oxidative stress and DNA damage have been shown to play a major role in the pathogenesis of obesity associated cancers. Therefore the aim of this study was to examine the effect of a massive weight loss induced by bariatric surgery on oxidative stress and DNA damage in whole blood samples of obese patients at 6 and 12 month after bariatric surgery. In a subpopulation of the study population a tending decrease in DNA damage in peripheral lymphocytes could be observed. Concerning oxidative stress parameters, determination of ferric-reducing antioxidative power and malondialdehyde levels as a marker for lipidperoxidation were carried out on plasma samples. Furthermore total and oxidised glutathione levels were determined in erythrocytes of patients. In synopsis oxidative stress parameters indicated a initial increase in oxidative stress 6 month after bariatric surgery and a decreasing trend at the end of the study. These findings give hope that obese patients may benefit from a reduced cancer risk through bariatric surgery induced weight loss. KW - Magenchirurgie KW - Oxidativer Stress KW - DNS-Schädigung KW - bariatrische Chirurgie KW - DNS-Schaden KW - Adipositas KW - bariatric surgery KW - DNA damage KW - oxidative stress Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259737 N1 - Aus datenschutzrechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. Eine inhaltlich identische neue Version ist erhältlich unter: https://doi.org/10.25972/OPUS-27835 ER -