TY - THES A1 - Schmittwolf, Carolin T1 - Analyse des Differenzierungspotentials muriner hämatopoetischer und neuraler Stammzellen nach Modifikation ihrer Genexpression T1 - Analysis of murine hematopoietic and neural stem cells´ potential of differentiation after modification of their gene expression N2 - In der vorliegenden Arbeit wurde das Differenzierungspotential muriner hämatopoetischer und neuraler Stammzellen nach Modifikation ihrer Genexpression untersucht. Zur Veränderung der Genexpression wurden für die beiden adulten Stammzelltypen zwei unterschiedliche experimentelle Ansätze gewählt: In hämatopoetischen Stammzellen wurden molekulare Regulatoren der Hämatopoese durch retroviral vermittelten Gentransfer überexprimiert und anschließend ihr in vitro Verhalten und in vivo in Maustransplantationsmodellen ihre Rekonstitutionsfähigkeit untersucht. Neurale Stammzellen wurden gleichzeitig mit den Chromatin-modifizierenden Substanzen Trichostatin A (TSA) und 5-Aza-2´-desoxycytidin (AzadC) behandelt, im Anschluß ihre Sensitivität gegenüber der Behandlung in vitro bestimmt und ihr hämatopoetisches Entwicklungspotential in vivo analysiert. In hämatopoetischen Stammzellen wurde der Transkriptionsfaktor HOXB4, die hämatopoetische Vorläuferkinase 1 (HPK1) oder eine Kinase-inaktive Mutante der HPK1 (HPK1M46) durch retrovirale Transduktion überexprimiert. Der Transfer wildtypischer HPK1 oder HPK1M46 Gene in Knochenmarkzellen hatte in vitro keinen meßbaren Einfluß auf die Proliferation und Anzahl primitiver Vorläuferzellen, was auch nach Expression verschiedener Proteinmengen beobachtet wurde. Das Repopulationsverhalten hämatopoetischer Stammzellen, die mit wildtypischer HPK1 transduziert wurden, war vergleichbar mit dem kontrolltransduzierter Stammzellen. Nach HPK1M46 Transduktion zeigten hämatopoetische Stammzellen in vivo ein reduziertes Langzeitrepopulationsverhalten und Knochenmarkzellen ex vivo ein eingeschränktes Koloniebildungspotential. Sowohl mit wildtypischer HPK1 als auch mit HPK1M46 transduzierte hämatopoetische Stammzellen wiesen ein normales Multilinienbesiedlungspotential auf. Nach Transduktion von Knochenmarkzellen mit HOXB4, einem wichtigen Regulator der Selbsterneuerung hämatopoetischer Stammzellen, konnten diese in vitro expandiert werden, ohne daß sie, wie dies bei kontrolltransduzierten Knochenmarkzellen auftrat, phänotypisch Differenzierungsmarker ausbildeten. Nach HOXB4 Transduktion akkumulierte eine homogene, Mac-1niedrig exprimierende Zellpopulation im Gegensatz zu einer Mac-1hoch, Gr-1 sowie c-kit positiven Population, die sich in den Kontrollkulturen entwickelte. Auf mRNS Ebene wurden nur in den Kontrollkulturen Transkripte hochreguliert, die für differenzierende Zellen spezifisch sind, wie z. B. Zyklin D1 während myeloider Differenzierung. Die Überexpression von HOXB4 ermöglichte eine konstante Proliferationsrate und hatte auf das Verhältnis von asymmetrischen zu symmetrischen Zellteilungen jedoch keinen Einfluß. Entsprechend blieb das Expressionsmuster an Zyklinen, Zyklin-abhängigen Kinasen und Mitgliedern des Transkriptionsaktivators AP-1 in HOXB4 transduzierten Knochenmarkzellen über den beobachteten Zeitraum konstant. Durch die Überexpression von HOXB4 kann somit in kultivierten Knochenmarkzellen in vitro eine stabile Proliferationsrate induziert und parallel eine fortschreitende Differenzierung der Knochenmarkkultur aufgehalten oder zumindest verzögert werden. Sowohl wildtypische als auch bcl-2 transgene neurale Stammzellen, die mit den Epigenotyp-verändernden Substanzen TSA und AzadC behandelt wurden, zeigten nach Transplantation in bestrahlte adulte Rezipienten hämatopoetisches Entwicklungspotential, das unbehandelte neurale Stammzellen nicht aufwiesen. Die Frequenz chimärer Tiere konnte durch Verwendung bcl-2 transgener neuraler Stammzellen erhöht werden und bereits in vitro wiesen wildtypische und bcl-2 transgene neurale Stammzellen unterschiedliche Sensitivität gegenüber der TSA/AzadC Behandlung auf. Diese von behandelten neuralen Stammzellen vermittelte Rekonstitution des hämatopoetischen Systems war langanhaltend und fand sowohl in der myeloiden als auch in der lymphoiden Linie statt. Eine erfolgreiche hämatopoetische Besiedlung war auch nach Transplantation klonaler neuraler Stammzellen zu beobachten, so daß eine Verunreinigung mit hämatopoetischen Zellen als Ursache der Rekonstitution ausgeschlossen werden konnte. Die beobachtete Generierung der morphologisch und phänotypisch intakten hämatopoetischen Zellen aus neuralen Zellen war nicht das Ergebnis einer Zellfusion von Rezipientenzellen mit injizierten Donorzellen. Denn die hämatopoetischen Donorzellen trugen einen normalen 2n Karyotyp und wiesen keine Heterokaryons auf, die für Fusionen charakteristisch wären. Somit ist es möglich, durch die Veränderung des Epigenotyps neuraler Stammzellen gefolgt von einer Transplantation in eine hämatopoetische Mikroumgebung eine Transdifferenzierung neuraler in hämatopoetische Zellen zu induzieren. N2 - This PhD thesis addressed the capacity of murine hematopoietic and neural stem cells to differentiate after modifying their gene expression pattern. Two different experimental approaches were chosen and applied to both systems of adult stem cells: By retroviral mediated gene transfer molecular regulators of hematopoiesis were overexpressed in hematopoietic stem cells and the behaviour of the genetically modified hematopoietic stem cells was analyzed in vitro and using mouse transplantatioin models their reconstitution capacity in vivo was tested. Neural stem cells were simultaneously treated with the two chromatin-modifying substances trichostatin A (TSA) and 5-aza-2´-deoxycytidine (AzadC), in vitro their TSA/AzadC sensitivity and in vivo their hematopoietic differentiation potential was studied. The transcriptionfactor HOXB4, the hematopoietic progenitor kinase 1 (HPK1) or a kinase-dead mutant of HPK1 (HPK1M46) were overexpressed in hematopoietic stem cells by retroviral transduction. Retrovirally transferred wildtype HPK1 or HPK1M46 in bone marrow cells showed no detectable influence on proliferation or numbers of primitive progenitors in vitro even when varying protein amounts were expressed. The repopulation capacity of hematopoietic stem cells transduced with wildtype HPK1 was comparable to control transduced stem cells. However, HPK1M46 transduced hematopoietic stem cells showed in vivo a reduced long-term repopulation activity and bone marrow cells displayed a limited colony forming potential in vitro. Wildtype HPK1 as well as HPK1M46 transduced hematopoietic stem cells possessed a normal multi-lineage repopulation potential. Although differentiation was observable in control transduced bone marrow cells transduction of bone marrow cells with HOXB4, an important regulator of self-renewal of hematopoietic stem cells, permitted in vitro expansion of bone marrow cells without expression of phenotypical differentiation markers. After HOXB4 transduction a homogenous Mac-1low expressing cell population accumulated in contrast to a Mac-1high, Gr-1 and c-kit positive population developing in control cultures. At mRNA level transcripts specific for differentiating cells like cyclin D1 during myeloid differentiation were upregulated only in control cells. Overexpression of HOXB4 enabled a constant cell proliferation rate but showed no influence on the ratio of symmetric to asymmetric cell divisions. Likewise the expression pattern of cyclins, cyclin-dependent kinases and members of the AP-1 transcription activator complex remained constant in HOXB4-transduced bone marrow cells over time. Thus by overexpressing HOXB4, a sustained and stable proliferation rate can be induced in cultured bone marrow cells in vitro and ongoing differentiation of the bone marrow culture can be blocked or at least delayed. After treatment with the epigenotype-modifying substances TSA and AzadC wildtype as well as bcl-2 transgenic neural stem cells revealed hematopoietic differentiation potential after transplantation into irradiated adult recipients which was not shown by untreated neural stem cells. The frequency of chimeric mice could be enhanced by using bcl-2 transgenic neural stem cells and already in vitro wildtype and bcl-2 transgenic neural stem cells revealed different TSA/AzadC sensitivity. This reconstitution of the hematopoietic system by treated neural stem cells was long lasting and occurred in the lymphoid as well as in the myeloid lineage. Successful hematopoietic reconstitution was also observable after transplanting clonal neural stem cells thereby excluding residual hematopoietic cells in the neural stem cell preparation to account for the reconstitution of the hematopoietic system. The generation of morphological and phenotypical intact hematopoietic cells from neural cells was not the consequence of cell fusion of recipient cells with injected donor cells because of the normal 2n genotype and the absence of heterokaryons which are known to be characteristic for fusion events. In view of that it is possible by modifying the epigenotype of neural stem cells followed by transplantation into a hematopoietic microenvironment to induce transdifferentiation of neural cells into hematopoietic cells. KW - Maus KW - Stammzelle KW - Genexpression KW - Modifizierung KW - Zelldifferenzierung KW - hämatopoetische Stammzelle KW - neurale Stammzelle KW - HOXB4 KW - HPK1 KW - epigenetische Modifikation KW - hematopoietic stem cell KW - neural stem cell KW - HOXB4 KW - HPK1 KW - epigenetic modification Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8812 ER - TY - THES A1 - Dürr, Michael T1 - Analyse des in vivo Differenzierungspotentials humaner leukämischer Zellen sowie humaner und muriner neuraler Stammzellen T1 - Analysis of the developmental potential of human leukemic cells as well as human and murine neural stem cells in vivo N2 - In der vorliegenden Arbeit wurde untersucht, ob die zelluläre Identität somatischer Stamm-/Vorläuferzelltypen durch Behandlung mit Chromatin-modifizierenden Substanzen und/oder durch Transplantation verändert werden kann. Dazu wurden humane leukämische KG-1 Zellen in murine Blastozysten injiziert. Murine und humane neurale Stammzellen (NSZ)wurden in vitro mit Trichostatin A (TSA) und 5’-Aza-2’-deoxycytidin (AzaC)inkubiert und anschließend in murine Blastozysten bzw. adulte NOD/SCID Mäuse transplantiert. In dem Versuchen konnte gezeigt werden, dass humane leukämische Zellen nach Injektion in murine Blastozysten in sich entwickelnden Embryonen und adulten Tiere präferentiell hämatopoetische Gewebe besiedeln. Daneben konnte gezeigt werden, dass myeloische Leukämiezellen in chimären murinen Embryonen ein Erythrozyten-spezifisches Genexpressionsmuster aktivieren. Die Inkubation humaner und muriner NSZ mit Histondeacetylase-Inhibitoren und AzaC führte zu einer reversiblen Hyperacetylierung von Histon H4 und zur Demethylierung genomischer DNA. Die Injektion behandelter muriner NSZ in murine Blastozysten führte im Vergleich zu unbehandelten NSZ zu einer stärkeren Besiedelung adulter Tiere durch Donorzellen. Darüber hinaus besiedelten Abkömmlinge injizierter behandelter NSZ häufiger hämatopoetische Gewebe in chimären Tieren und exprimierten Hämatopoese-spezifische Oberflächenproteine. Weitere Analysen ergaben, dass humane NSZ im Gegensatz zu humanen hämatopoetischen Stammzellen nicht dazu in der Lage sind, in immunsupprimierten NOD/SCID Mäusen ein humanes hämatopoetisches System zu etablieren. Auch nach Inkubation humaner NSZ mit Chromatin-modifizierenden Substanzen konnte keine humane Hämatopoese in transplantierten Mäusen festgestellt werden. Diese Ergebnisse zeigen, dass der Differenzierungsstatus und das Entwicklungspotential verschiedener Zelltypen durch geeignete Stimuli verändert werden kann. Durch Injektion in embryonale Mikroumgebung differenzieren humane leukämische Zellen und aktivieren ein Erythrozyten-spezifisches Genexpressionsmuster. Durch die Veränderung des Epigenotyps muriner NSZ gefolgt von einer Transplantation in murine Blastozysten konnte eine Transdifferenzierung neuraler in hämatopoetische Zellen induziert werden. N2 - The objective of the present thesis was to investigate whether the cellular identity of somatic stem and progenitor cell types could be modified by treatment with chromatin modifying agents and/or transplantation into appropriate in vivo systems. To this end, human leukemic KG-1 cells were injected into murine blastocysts. Murine and human neural stem cells (NSC) were incubated with Trichostatin A (TSA) and 5’-Aza-2’-deoxycytidine (AzaC) in vitro and subsequently transplanted into murine blastocysts and adult NOD/SCID mice respectively. It could be shown that after transplantation into murine blastocysts human leukemic cells preferentially engraft hematopoietic tissues of developing embryos and adults. Furthermore, myeloid leukemic cells activated an erythrocyte-specific gene expression pattern in chimeric embryos. Incubation of human and murine NSC with Histone deacetylases and AzaC caused reversible hyperacetylation of histone H4 and demethylation of genomic DNA. Comparison of adult recipient mice revealed that the injection of treated murine NSC caused a more stringent engraftment of recipients than untreated murine NSC. In addition, progeny of TSA/AzaC treated NSC engrafted more often hematopoietic tissues and expressed hematopoiesis-specific surface markers. In a further set of experiments it could be demonstrated that in contrast to human hematopoietic stem cells, human NSC do not engraft the hematopoietic system of immundeficient mice. Even after treatment of human NSC with chromatin-modifying agents no human hematopoiesis was detected in transplanted mice. Overall, these results indicate that the differentiation status and developmental potential of several somatic progenitor and stem cell types could be modified by appropriate stimuli. By exposure to embryonic microenvironment human leukemic cells differentiate and activate an erythrocyte-specific gene expression pattern. After modification of the epigenotype of murine NSC followed by transplantation into murine blastocyts transdifferentiation of neural into hematopoietic cells could be induced. KW - Stammzelle KW - Leukämie KW - Zelldifferenzierung KW - Differenzierungspotential KW - Leukämie KW - neurale Stammzelle KW - differentiation potential KW - leukemia KW - neural stem cell Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14567 ER - TY - JOUR A1 - Kumar, Praveen A1 - Naumann, Ulrike A1 - Aigner, Ludwig A1 - Wischhusen, Joerg A1 - Beier, Christoph P A1 - Beier, Dagmar T1 - Impaired TGF-β induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53 JF - American Journal of Cancer Research N2 - Gliomas have been classified according to their histological properties. However, their respective cells of origin are still unknown. Neural progenitor cells (NPC) from the subventricular zone (SVZ) can initiate tumors in murine models of glioma and are likely cells of origin in the human disease. In both, p53 signaling is often functionally impaired which may contribute to tumor formation. Also, TGF-beta, which under physiological conditions exerts a strong control on the proliferation of NPCs in the SVZ, is a potent mitogen on glioma cells. Here, we approach on the crosstalk between p53 and TGF-beta by loss of function experiments using NPCs derived from p53 mutant mice, as well as pharmacological inhibition of TGF-beta signaling using TGF-beta receptor inhibitors. NPC derived from p53 mutant mice showed increased clonogenicity and more rapid proliferation than their wildtype counterparts. Further, NPC derived from p53\(^{mut/mut}\) mice were insensitive to TGF-beta induced growth arrest. Still, the canonical TGF-beta signaling pathway remained functional in the absence of p53 signaling and expression of key proteins as well as phosphorylation and nuclear translocation of SMAD2 were unaltered. TGF-beta-induced p21 expression could, in contrast, only be detected in p53\(^{wt/wt}\) but not in p53\(^{mut/mut}\) NPC. Conversely, inhibition of TGF-beta signaling using SB431542 increased proliferation of p53\(^{wt/wt}\) but not of p53\(^{mut/mut}\) NPC. In conclusion, our data suggest that the TGF-beta induced growth arrest in NPC depends on functional p53. Mutational inactivation of p53 hence contributes to increased proliferation of NPC and likely to the formation of hyperplasia of the SVZ observed in p53 deficient mice in vivo. KW - mouse brain KW - tumors KW - cancer KW - TGF-beta KW - glioblastoma stem cell KW - pathways KW - expression KW - astrocytoma KW - glioblastoma KW - transforming growth factor-beta-1 KW - neurogenesis KW - gliomas KW - neural stem cell KW - p53 KW - subventricular zone KW - premalignant lesion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144262 VL - 5 IS - 11 ER - TY - JOUR A1 - Beyer, Felix A1 - Jadasz, Janusz A1 - Samper Agrelo, Iria A1 - Schira‐Heinen, Jessica A1 - Groh, Janos A1 - Manousi, Anastasia A1 - Bütermann, Christine A1 - Estrada, Veronica A1 - Reiche, Laura A1 - Cantone, Martina A1 - Vera, Julio A1 - Viganò, Francesca A1 - Dimou, Leda A1 - Müller, Hans Werner A1 - Hartung, Hans‐Peter A1 - Küry, Patrick T1 - Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system JF - Glia N2 - Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell‐dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease. KW - glial fate modulation KW - myelin KW - neural stem cell KW - p57kip2 KW - regional heterogeneity KW - spinal cord injury KW - transplantation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218566 VL - 68 IS - 2 SP - 393 EP - 406 ER -