TY - THES A1 - Zechner, Martin T1 - Quantifizierung morphologischer Veränderungen an Neuronen der lateralen Amygdala in SPRED2-defizienten Mäusen T1 - Quantification of morphological changes on lateral amygdala neurons in SPRED2-deficient mice N2 - In der vorliegenden Dissertation wurden die Folgen einer SPRED2-Defizienz in einem Knockout Mausmodell untersucht. Dabei wurde insbesondere die mögliche Verbindung zur Zwangsstörung, einer psychiatrischen Erkrankung beleuchtet. Das SPRED2-Protein kommt im menschlichen Körper in zahlreichen Geweben vor, besonders im Hirn wurde eine ubiquitäre Expression nachgewiesen und ein Zusammenhang mit der Neurogenese und neuronaler Differenzierung vermutet. Seine regulatorische Funktion besteht in einer inhibitorischen Wirkung auf den BDNF/TrkB-ERK-Signalweg, welcher u.a. für die Transkription neuronaler Gene verantwortlich ist. Die verwendeten SPRED2-defizienten Mäuse wurden durch Insertion eines Gene-Trap Vektors in das Spred2-Gen generiert. Die Insertion verhindert letztendlich die korrekte Translation des Proteins. Von der durch weitere Verpaarung entstehenden SPRED2-Knockout Mauslinie wurden ausschließlich männliche Tiere verwendet. Im Rahmen einer SPRED2-KO-Studie von der AG Schuh des Physiologischen Instituts der Universität Würzburg, die u.a. die Entgleisung der HHNA mit resultierendem erhöhten Stresshormonspiegel und eine Dysregulation des Mineralhaushaltshormons Aldosteron zeigte, wurden bei den Versuchstieren zwanghafte Verhaltensmuster beobachtet. Daraufhin wurden elektrophysiologische Messungen durchgeführt, die auf eine Anomalie in der synaptischen Übertragung zwischen Thalamus und Amygdala hindeuteten. Erhöhte Effizienz und Erregbarkeit der amygdaloiden Neuronen führten zu der morphologischen Untersuchung, die im Rahmen dieser Arbeit durchgeführt wurden. Da die Afferenzen des Thalamus vorwiegend in den lateralen Kern der Amygdala projizieren, wurde zunächst dieser betrachtet. Ziel der Untersuchung war es, Erkenntnisse darüber zu erlangen, ob der Knockout des SPRED2-Proteins in Mäusen zu einer veränderten Morphologie der Neuronen der lateralen Amygdala führt. Falls dies der Fall sein sollte, könnte damit zumindest ansatzweise das zwanghafte Verhalten der SPRED2-defizienten Mäusen erklärt werden. Die Hirne der Versuchstiere wurden nach der Golgi-Cox-Imprägnierung nach Glaser und Van der Loos und der Einbettung in Celloidin in 150 μm dicke Scheiben geschnitten und anschließend mithilfe eines Hellfeld-Mikroskops und des Neurolucida-Systems analysiert. Quantitativ erfasst und analysiert wurden pyramidale Klasse 1-Neuronen der lateralen Amygdala inklusive absoluter Anzahl und Dichte der Spines an ihren Dendriten. Die Untersuchung zeigte bei SPRED2-KO-Mäusen eine signifikante Erhöhung der mittleren Länge des apikalen Dendriten in Branch order 3 und eine tendenzielle Erhöhung der Gesamtzahl der Spines an den Dendriten in Branch order 1-3 gegenüber den Wildtyp-Mäusen. Daraus lässt sich folgern, dass ein Knockout des SPRED2-Proteins sich auf die Morphologie der Neuronen der lateralen Amygdala auswirkt. Die erhöhte mittlere Länge des apikalen Dendriten in Branch order 3 und die tendenziell erhöhte Spine-Anzahl korrelieren mit der gesteigerten synaptischen Übertragung und Erregbarkeit an amygdaloiden pyramidalen Neuronen. Auf molekularer Ebene kann die Hyperaktivität der lateralen Amygdala als Folge der fehlenden Inhibition des BDNF/TrkB-ERK-Signalwegs und der dadurch veränderten Expression zahlreicher synaptischer Proteine diskutiert werden. Die veränderte Morphologie der Neuronen in der lateralen Amygdala kann eine Ursache für das zwanghafte Verhalten der Mäuse sein, jedoch ist anzunehmen, dass Zwangsstörungen nicht bloß eine monokausale Ursache haben. Diese Arbeit identifiziert SPRED2 als neuen Regulator der Morphologie und Aktivität von Synapsen und die Amygdala als wichtige Hirnregion bei der Entstehung von Zwangsstörungen. SPRED2 ist somit ein vielversprechender Angriffspunkt für andere und spezifischere Untersuchungen der Hirnfunktion und eine potenzielle genetische Ursache für weitere neurologische Erkrankungen. N2 - In this present dissertation, the consequences of SPRED2-deficiency in a knockout mouse model have been investigated. In particular, the possible connection to the obsessive-compulsive disorder was examined. The SPRED2 protein is found in many tissues in the human body. Especially in the brain, ubiquitous expression was found and a connection to neurogenesis and neuronal differentiation was suspected. Its regulatory function is an inhibitory effect to the BDNF/TrkB-ERK signaling pathway, which amongst others is responsible for the transcription of neuronal genes. The SPRED2-deficient mice used were generated by insertion of a gene trap vector into the Spred2 gene. The insertion ultimately prevents the correct translation of the protein. From the SPRED2 knockout mouse line only male animals were used. As part of a SPRED2-KO study by AG Schuh of the Physiological Institute of the University of Würzburg, which showed, inter alia, the derailment of HHNA resulting in increased stress hormone levels and a dysregulation of the mineral household hormone aldosterone, obsessive behaviors were observed in the experimental animals. Subsequently, electrophysiological measurements were performed indicating an abnormality in synaptic transmission between thalamus and amygdala. Increased efficiency and excitability of the amygdaloid neurons led to the morphological investigation, which were accomplished in the context of this work. Since the afferents of the thalamus predominantly project into the lateral nucleus of the amygdala, it was first considered. The aim of the study was to find out if the knockout of the SPRED2 protein in mice leads to an altered morphology of neurons of the lateral amygdala. If so, it could at least somewhat explain the compulsive behavior of SPRED2-deficient mice. The brains of the test animals were cut into 150 μm slices and, after Golgi-Cox impregnation according to Glaser and Van der Loos, embedded in celloidin and then analyzed using a bright field microscope and the Neurolucida system. Quantitatively, pyramidal class 1 neurons of the lateral amygdala were recorded and analyzed, including the absolute number and density of the spines at their dendrites. The study showed a significant increase in the mean length of the apical dendrites in branch order 3 in SPRED2-KO mice and a tendency to increase the total number of spines on the dendrites in branch order 1-3 compared to the wild-type mice. It can be concluded that a knockout of the SPRED2 protein affects the morphology of the neurons of the lateral amygdala. The increased mean length of the apical dendrites in branch order 3 and the tendency to increased spine counts correlate with the increased synaptic transmission and excitability of amygdaloid pyramidal neurons. At the molecular level, the hyperactivity of the lateral amygdala may be discussed as a consequence of the lack of inhibition of the BDNF/TrkB-ERK pathway and the resulting altered expression of numerous synaptic proteins. The altered morphology of the neurons in the lateral amygdala may be a cause of the compulsive behavior of the mice, but it can be assumed that obsessive-compulsive disorder does not merely have a monocausal cause. This work identifies SPRED2 as a new regulator of morphology and activity of synapses and the amygdala as an important brain region in the development of obsessive-compulsive disorder. SPRED2 is thus a promising target for other and more specific studies of brain function and a potential genetic cause for other neurological disorders. KW - SPRED2 KW - OCD KW - Amygdala KW - SPRED2-defiziente Mäuse KW - Zwangsstörung KW - Ras-Raf-Signalweg Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172291 ER - TY - THES A1 - Bonn, Maria Roswitha T1 - Zielstrukturen des serotonergen Systems in der laterobasalen Amygdala : Untersuchungen an Ratten und einem Mausmodell für emotionale Dysregulation T1 - Targets of the serotonergic system in the laterobasal amygdala : investigations in rats and a mouse model for emotional dysregulation N2 - Die Amygdala ist ein Kernkomplex, der dicht von serotonergen Afferenzen innerviert wird. Sowohl bei Tieren als auch beim Menschen spielen Interaktionen zwischen dem serotonergen System und der Amygdala bei der Verarbeitung von Reizen, die mit Angst oder Stress assoziiert sind, eine zentrale Rolle. Genetische Variationen im serotonergen System und/oder dauerhafter Stress können dazu führen, dass diese Verarbeitungsprozesse fehlerhaft ablaufen, wodurch Verhaltensanormalitäten bzw. die Entstehung psychiatrischer Erkrankungen begünstigt werden. Die Zielneurone der serotonergen Transmission in der Amygdala, die molekularen Mechanismen möglicher Interaktionen und strukturelle Konsequenzen der Störungen dieser Interaktionen sind jedoch bis zum heutigen Zeitpunkt noch nicht vollständig bekannt. Daher bestand ein Ziel der vorliegenden Arbeit darin, den Einfluss eines Ungleichgewichts im serotonergen System (5-Htt KO) sowie von wiederholtem, sozialem Stress auf die neuronale Morphologie der Amygdala zu analysieren und Zielneurone serotonerger Afferenzen zu identifizieren und zu charakterisieren, um die neuronalen Netzwerke der Emotionsverarbeitung besser verstehen zu können. Um vom 5-Htt–Genotyp abhängige und stressbedingte neuromorphologische Veränderungen zu untersuchen, wurden dreidimensionale Rekonstruktionen von Neuronen der laterobasalen Amygdala von männlichen, adulten Wildtyp (WT)- und 5-Htt KO-Mäusen angefertigt und bezüglich verschiedener morphologischer Parameter ausgewertet. An den Pyramidenzellen wurden nur geringfügige Veränderungen der dendritischen Komplexität, jedoch, im Vergleich zu WT-Mäusen, eine wesentliche Erhöhung der Dornendichte an spezifischen dendritischen Kompartimenten bei gestressten WT-Mäusen, sowie nicht gestressten und gestressten 5-Htt KO-Mäusen nachgewiesen. Im Vergleich zu nicht gestressten WT–Mäusen war die dendritische Dornendichte aller anderen Gruppen gleichermaßen erhöht. Die Sternzelle, zeigten bezüglich der untersuchten Parameter keine morphologischen Veränderungen auf. Eine besondere Subpopulation der Interneurone stellen die NeuropeptidY (NPY)–Neurone der laterobasalen Amygdala dar, da sie in diesen Nuclei anxiolytisch wirken. Es gibt nur wenige Anhaltspunkte darüber, durch welche Systeme NPY–Neurone moduliert werden. Da sowohl NPY–Neurone in der laterobasalen Amygdala als auch das serotonerge System an angstregulierenden Prozessen beteiligt sind, sollte im zweiten Teil der vorliegenden Arbeit untersucht werden, ob es sich bei diesen Neuronen um Zielstrukturen des serotonergen Systems handelt. Mittels licht- und elektronenmikroskopischer Analysen wurden synaptische Kontakte zwischen serotonergen Afferenzen und NPY-immunreaktiven Neuronen in der laterobasalen Amygdala von Ratten verifiziert. Da der funktionelle Einfluss der serotonergen Innervation auf diese Zielneurone von deren Serotoninrezeptor (5-HTR)-Ausstattung abhängt, wurden Koexpressionsanalysen von NPY mRNA mit den mRNAs verschiedener 5-HTR durchgeführt. Die Analysen ergaben, dass NPY mRNA–reaktive Neurone in der laterobasalen Amygdala 5-HT1A und 5-HT2C, jedoch nicht 5-HT3 mRNA koexprimieren. Die in der vorliegenden Arbeit erzielten Resultate liefern neue Erkenntnisse über den Einfluss des serotonergen Systems auf die laterobasale Amygdala von Mäusen und Ratten. Bei den Veränderungen der dendritischen Dornendichte nach sozialen Stresserfahrungen könnte es sich um neuroadaptive bzw. kompensatorische Mechanismen der Pyramidenzellen handeln, die WT-Mäusen eine Anpassung an sich ändernde, negative Umweltbedingungen ermöglicht. Die erhöhte Dornendichte könnte dabei die Ausbildung eines „emotionalen Gedächtnisses“ repräsentieren, das eine flexible Verhaltensantwort auf ein erneutes Auftauchen von Gefahr erlaubt. Eine solche Modulation der Erregbarkeit der laterobasalen Amygdala könnte beispielsweise über eine situationsentsprechende Hemmung des Outputs der Pyramidenzellen durch differentiell aktive inhibitorische Netzwerke erfolgen. Eine differentielle Aktivierung kann z. B. über unterschiedliche Rezeptorausstattungen, wie es in der Subpopulation der NPY–Neurone in der vorliegenden Arbeit nachgewiesen wurde, erfolgen. Das erhöhte angstähnliche Verhalten der 5-Htt KO-Mäuse nach wiederholtem Stress könnte mit der Unfähigkeit zusammenhängen, in entsprechenden Situationen durch Neubildung von Dornen zu reagieren, da die Dornendichte bei diesen Tieren schon unter stressarmen Umweltbedingungen ihr Maximum erreicht hat. Sowohl Fehlfunktionen der neuronalen Plastizität als auch mögliche Fehlfunktionen der differentiellen Inhibierung der Pyramidenzellen durch Interneurone, die durch genetische Variationen und/oder Stress bedingt sein können, könnten eine „offene Tür“ repräsentieren, die zu manifesten Auffälligkeiten im Verhalten bei Tieren führt bzw. auch zur Entstehung bestimmter psychiatrischer Erkrankungen beim Menschen beiträgt. N2 - The amygdala is a heterogenous nuclear complex, which belongs to the limbic system and recieves a dense serotonergic innervation. In animals and in humans, interactions between the serotonergic system and the amygdala play a key role in emotional stimulus processing, especially for anxiety- and stress–related stimuli. Genetic variations within the serotonergic system and/or chronic stress can cause dysregulation of these mechanisms, which promote abnormal behavior and development of psychiatric disorders, respectively. Up to now, the target neurons of serotonergic neurotransmission in the amygdala, the molecular mechanisms of possible interactions and morphological consequences of dysregulation of these interactions are not investigated completely, yet. Thus, one aim of this thesis was to analyze the impact of an imbalance within the serotonergic system (serotonin transporter knock out, 5-Htt KO) and repeated social stress on neuronal morphology in the amygdala and to identify and characterize target neurons of serotonergic afferents. This will help to get a better understanding of the neuronal networks associated with emotional stimulus processing. To investigate 5-Htt genotype–dependent and stress–related neuromorphological changes, three-dimensional reconstructions of pyramidal cells and stellate interneurons of the laterobasal amygdala of male, adult wildtype (WT) and 5-HttKO mice were carried out and different morpholgical parameter were analyzed. Pyramidal cells displayed only subtle changes in dendritic complexity but a significant increase in spine density on specific dendritic compartments in stressed WT mice and naïve and stressed 5-HttKO mice, compared to naïve WT mice. In all groups, the increase in spine density was, compared to WT mice, similar. Stellate interneurons lacked detectable genotype–dependent and stress–related morphological differences. NeuropeptideY (NPY) neurons represent a unique and special interneuronal subpopulation in the laterobasal amygdala due to their anxiolytic effects in these nuclei. There is much information about the molecular effects of NPY via specific receptors and how NPY can regulate emotion–related states, especially anxiety–like behavior. However, only few indications are available, by which systems NPY neurons are modulated themselves. Since both NPY neurons in the laterobasal amygdala and the serotonergic system are involved in anxiety–regulating processes, the task of the second part of the present thesis was to investigate if these neurons were targets of the serotonergic system. Applying light and electron microscopic methods, perisomatic synaptic contacts between serotonergic afferents and NPY-immunoreactive neurons were identified in the laterobasal amygdala of rats. As the functional impact of the serotonergic innervation significantly depends on the serotonin receptor (5-HTR) equipment of the target neurons, coexpression of NPY mRNA and different 5-HTR mRNAs was studied. For this purpose, a novel variation of in situ hybridization, which allows specific coexpression analyses of NPY mRNA with low-abundant mRNAs, was developed and established. The results show that NPY mRNA–reactive neurons in the laterobasal amygdala coexpress 5-HT1A and 5-HT2C, but lack 5-HT3 mRNA. In the present thesis, detailed, new data on the impact of the serotonergic system on the laterobasal amygdala of mice and rats were obtained. The changes in dendritic spine density after repeated stress could represent neuroadaptive or compensatory mechanisms of these neurons, which enable WT mice to adapt to negative environmental changes. The increase in dendritic spine density could stand for the formation of an “emotional memory“ facilitating quick and flexible behavioral reactions upon re-appearing danger. This modulation of the laterobasal amygdala´s excitability could occur, for instance, via a specific inhibition of pyramidal output by differentially activated inhibitory networks. Such a differential activation can result from a variable receptor equipment, as shown for NPY neurons in the laterobasal amygdala in the present thesis. The increased anxiety–like behavior of 5-HttKO mice after repeated social stress could be due to the unability of these mice to further increase spine density in corresponding situations, since spine density already reached the maximum level in a low-stress environment. Both dysfunction of neuronal plasticity and possible dysfunction of the differential inhibition of pyramidal cells via interneurons presumably caused by genetic variations and/or stressful life events could represent an “open door“ facilitating abnormal behavior in animals or development of certain psychiatric disorders in humans. KW - Angst KW - Neuropeptid Y KW - Stress KW - Corpus amygdaloideum KW - Serotonerge Nervenzelle KW - Amygdala KW - serotonerges System KW - Anxiety KW - stress KW - amygdala KW - serotonergic system KW - neuropeptide Y Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69494 ER - TY - THES A1 - Kircher, Stefan Josef T1 - Computergestützte 3D-Rekonstruktionen und stereologische Untersuchungen am Mandelkernkomplex von normalen und pathologisch veränderten Gehirnen des Menschen T1 - Computer based 3D reconstruction and stereologic analysis of the amygdala complex of normal and pathological human brains N2 - Der Mandelkernkomplex (Amygdala) ist ein Kerngebiet im medialen Temporallappen, das zum limbischen System gehört und dem eine wichtige Rolle in der Regulation von Gefühlen, sozialem Verhalten, Affekten, Gedächtnis und Sexualität zugeschrieben wird. Die mit Hilfe der 3D-Software Amira erstellten dreidimensionalen Rekonstruktionen des Mandelkernkomplexes von Kontrollfällen und Personen mit M. Alzheimer, Chorea Huntington, M. Little und Megalenzephalie basierten auf den mikroskopisch ausgewerteten zytoarchitektonischen Abgrenzungen der amygdaloiden Kerngebiete der nach Nissl gefärbten Hirnschnittpräparate. Die quantitativen Ergebnisse wurden mit bewährten stereologischen Methoden verglichen und den mit Post-mortem- und In-vivo-Verfahren generierten Ergebnissen anderer Studien gegenüber gestellt. Dabei wurden die Nomenklatur und die Abgrenzung der einzelnen Kerne diskutiert und auf exogene und biologische Volumen und Zelldichte beeinflussende Faktoren eingegangen, die die exakte und reproduzierbare Volumenbestimmung des menschlichen ZNS und seiner Komponenten erschweren. Unter Berücksichtigung von Schrumpfungsfaktoren und mehr oder minder großen Differenzen in der Abgrenzung des Mandelkernkomplexes sind die eigenen Daten mit bisher veröffentlichten Untersuchungen gut vergleichbar. Die in dieser Arbeit beschriebene Methode der dreidimensionalen Rekonstruktion von Hirnstrukturen eröffnet neue Möglichkeiten der Darstellung und Animation, die entscheidende wissenschaftliche Kenntnisse und wichtige Hinweise zur Auswertung MRT-basierter Morphometrie liefern und damit zur Diagnostik neuropsychiatrischer Erkrankungen beitragen kann. N2 - The amygdala complex is located in the medial temporal lobe, belongs to the limbic system and is involved in the regulation of feelings, social behaviour, affects, memory and sexuality. With support of the 3D Software Amira three-dimensional reconstructions of the amygdala of control cases and people with Alzheimer’s Disease, Chorea Huntington, Little’s Disease and Megalenzephalie based on microscopic controlled cytoarchitectural boundaries of the amygdaloid nucleus areas of Nissl coloured serial brain sections have been created. The quantitative results were compared with approved stereologic methods and with other post-mortem and in vivo defined procedures. Thereby the nomenclature and the demarcation of the individual nuclei have been discussed and the exogenous and biological volumes as well as the influencing factors of the cell-density, which complicate the precise and reproducible determination of the volume of the human CNS and its components, were considered. Under consideration of the shrinking factors and more or less big differences in the demarcation of the amygdala complex our results are well comparable with previously released studies. The three-dimensional reconstruction of brain structures opens up a wide range of new possibilities for presentation and animation as thoroughly described in this study. It will probably lead to significant scientific knowledge and important hints about the evaluation of NMR-based morphometry, which can contribute to the diagnostics of neuropsychiatric diseases as well. KW - Mandelkernkomplex KW - Amygdala KW - 3D-Rekonstruktion KW - amygdala KW - 3D reconstruction Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20747 ER -