TY - THES A1 - Voelckel, Markus T1 - Zeitaufgelöste Spektroskopie von nanoskaligen Halbleitern und Pyrenderivaten T1 - Time-resolved spectroscopy of nanoscale semiconductors and pyrene derivatives N2 - Um den jahrtausendealten Weg der Menschheit vom Papyrus über Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsfähigerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanoröhren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele Möglichkeiten für zukünftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bezüglich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen. Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanoröhren als chiralitätsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgelöste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch Dünnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden. In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zunächst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanoröhre bewegen, sondern lokalisiert vorliegen. Die längere trionischen Zerfallsdauer nach X$_1$- verglichen mit X$_1^+$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X$_1$ und X$_1^+$ wurde an SWNT-Dünnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerfällt schneller mit zunehmender Ladungsträgerdichte durch höherer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungsträgern, welche als nichtstrahlende Löschstellen fungieren. Für das X$_1^+$-PB ist ein ähnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption überlagert. Diese lässt sich in einer starken Sättigung der Dotierung wie auch einer hohen Bandkantenverschiebung begründen. In Kapitel 5 wurde die Größe der Exzitonen und Trionen in dotierten SWNT-Dünnschichtfilmen mittels des Phasenraumfüllmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-Überlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Größen $\xi_\mathrm{k}$ zu erhalten. Für die Trionengröße wurde zusätzlich der Überlapp der Absorptionsbanden einbezogen, um korrigierte Werte $\xi_{\mathrm{T,k}}$ zu bestimmen. $\xi_\mathrm{k}$ beträgt in der intrinsischen Form 6$\pm$2\,nm und bleibt bis zu einer Ladungsträgerdichte $n_{\mathrm{LT}}<0.10$\,nm$^{-1}$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei $n_{\mathrm{LT}}\approx0.20$\,nm$^{-1}$ zu beobachten. Für diesen Trend ist die Überlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verfälscht wird. Die Abweichung der intrinsischen Größe von den in der Literatur berichteten 13$\pm$3\,nm ist möglicherweise auf Unterschiede in der Probenpräparation zurückzuführen. Für die Trionengröße ergibt sich bei steigender Dotierung ein ähnliches Verhalten: Sie beträgt für $n_{\mathrm{LT}}<0.20$\,nm$^{-1}$ 1.83$\pm$0.47\,nm, was in der Größenordnung in guter Übereinstimmung mit der Literatur ist. Für höhere Dotierungen sinkt $\xi_{\mathrm{T,k}}$ bis auf 0.92$\pm$0.26nm ab. Dies erklärt sich dadurch, dass bei höherer $n_{\mathrm{LT}}$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbandenüberlagerung nicht mehr vollständig durch den entsprechenden Korrekturfaktor kompensiert werden kann. Kapitel 6 beschäftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorläufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle Ähnlichkeit der Moleküle äußert sich in gleichen Reduktionspotentialen wie auch ähnlichen potentialabhängigen Absorptionsspektren. Während nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenzählen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarität der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes führt hier zu Änderungen. Die durchschnittliche Fluoreszenzlebensdauer $\tau_{\mathrm{av}}$ sinkt außerdem mit Reduktion und Radikalbildung; für höhere Emissionswellenlängen ist $\tau_{\mathrm{av}}$ außerdem höher. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Moleküle sowie die Sensibilität gegenüber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollständig belegt werden, wofür EPR-Messugen notwendig wären. N2 - In order to follow the millennia-old path of mankind from papyrus to letterpress printing and silicon-based semiconductors in the direction of even more powerful technologies and to create further moments of Eureka, carbon nanotubes provide a wide field of research. In particular, the semiconducting characteristics of SWNTs and the manipulation of these by doping offer many possibilities for future applications in modern electrical technology. The way to industrial implementation of SWNTs in new types of optoelectronic devices could be paved by expanding knowledge about SWNTs and the doping-based adaptation of their properties. In this dissertation, semiconducting (6,5)-SWNTs were examined as chirality-pure, polymer-stabilized samples to achieve this expansion of knowledge. The ultrafast time-resolved spectroscopy of the SWNTs was carried out on organic suspensions as well as thin films, each of which had been doped with a certain amount of gold(III) chloride. In this way, the dynamics were examined on a ps time scale. In chapter 4 it was shown by transient absorption experiments on redox-chemically p-doped SWNT suspensions that the trions formed during optical excitation do not move diffusively along the nanotube like excitons, but are localized. The longer trion decay after X$_1$- compared to X$_1^+$-resonant excitation also shows that the trion is fed from the exciton. The influence of doping on the decay dynamics of X $_1$ and X$_1^+$ was investigated on SWNT thin-films. The photobleach signal of the exciton shifts hypsochromically and decays faster with increasing charge carrier density, achieved by higher gold(III) chloride concentrations. This results from the reduced distance between the charge carriers, which promote non-radiative quenching. Similar behavior can be observed for the X$ _1^+$-PB. As the doping increases further, this signal is superimposed by a photo-absorption that can be assigned to the H-band. This PA can be explained by an intense saturation of the doping as well as a strong shift of the band edge. In chapter 5 the size of the excitons and trions in doped SWNT thin-films was determined using the phase space filling model. Special attention was paid to the compensation of the PB/PA overlap, the fast decay, differences between the absorption and excitation spectra, and the proportion of intrinsic/doped nanotube segments, in order to obtain corrected values $\xi_\mathrm{k}$. For the trion size, the overlap of the absorption bands was also included in $\xi_{\mathrm{T,k}}$. For the intrinsic $\xi_\mathrm{k}$ a value of 6$\pm$2\,nm was obtained. $\xi_\mathrm{k}$ stays on this niveau with doping levels at charge carrier densities $n_{\mathrm{LT}}<0.10$\,nm$^{-1}$, with higher doping it decreases to about 4\,nm for $n_{\mathrm{LT}}\approx0.20$\,nm$^{-1}$. This drop is due to the overlap of the excitonic and the H-band in the absorption spectra because the proportion of intrinsic nanotube segments is overestimated. The deviation of the intrinsic size from the 13$\pm$3\,nm reported in the literature results from differences in the sample preparation. The behavior of the trion size with increasing doping is similar: For $n_{\mathrm{LT}}<0.17$\,nm$^{-1}$ it is 1.83$\pm$0.47\,nm, which is comparable in magnitude to literature With even higher doping, $\xi_{\mathrm{T,k}}$ decreases to 0.92$\pm$0.26\,nm. At very high $n_{\mathrm{LT}}$, the H-band dominates the spectrum so that the influence of the absorption band superposition can no longer be fully compensated by a correction factor, which leads to the small values for $\xi_{\mathrm{T,k}}$. Chapter 6 now dealt with the (spectro-)electrochemical investigation of precursors of molecular radicals instead of redox-chemical doping of nanoscale semiconductors. SWV measurements strongly indicate that the pyrenes Pyr1-Pyr3 form mono-, bi- and tetraradicals, respectively, on reduction, depending on the number of their substituents. The structural similarity of the molecules is expressed in the same reduction potentials as well as similar potential-dependent absorption spectra. While only marginal differences could be determined in the PL spectra of the neutral and reduced species, the time-correlated single photon counting provided more informative results: The fluorescence lifetime is strongly influenced by the polarity of the environment - even the addition of the conductive salt leads to changes here. The average fluorescence lifetime $\tau_{\mathrm{av}}$ also decreases with reduction and radical formation; for higher emission wavelengths $\tau_{\mathrm{av}}$ is also higher. Overall, the experiments made clear the good screening between the pyrene nucleus and naphthalimide substituents of the molecules as well as the sensitivity to the medium through TICT, but the presence of bi- and tetraradicals cannot be fully proven, for which EPR measurements would be necessary. KW - Dotierung KW - Einwandige Kohlenstoff-Nanoröhre KW - Elektrochemie KW - Ultrakurzzeitspektroskopie KW - (6,5)-Spektroskopie KW - Pyrenderivate KW - TICT KW - Spektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276119 ER - TY - THES A1 - Wulfert-Holzmann, Paul T1 - Die elektrische Leitfähigkeit des negativen Aktivmaterials moderner Blei-Säure-Batterien T1 - The electrical conductivity of the negative active material in modern lead-acid batteries N2 - Diese Doktorarbeit beschäftigt sich mit dem Wirkmechanismus der elektrischen Leitfähigkeit in Blei-Säure-Batterien. Obwohl ihm eine zentrale Rolle beim „Kohlenstoff-Effekt“ zugeordnet wird, ist der Wirkmechanismus der elektrischen Leitfähigkeit bislang vergleichsweise wenig untersucht worden und konnte dementsprechend noch nicht vollständig aufgeklärt werden. Mit dem Anspruch, diese Forschungslücke zu schließen, zielt die vorliegende Doktorarbeit darauf ab, den Einfluss der elektrischen Leitfähigkeit auf die Performance der Blei-Säure-Batterie systematisch herauszuarbeiten und so einen Beitrag zur Generierung neuer Entwicklungsansätze zu leisten, z. B. in Form von maßgeschneiderten Additiven. Bislang ist noch unklar, ob allein die elektrische Leitfähigkeit des Aktivmaterials relevant ist oder diese auch durch Additive beeinflusst wird. Das liegt vor allem daran, dass geeignete Messmethoden fehlen und deshalb der Einfluss von Additiven auf die elektrische Leitfähigkeit des Aktivmaterials wenig untersucht wurde. Deswegen zielt diese Arbeit auch darauf ab, eine neuartige Messmethode zu entwickeln, um die elektrische Leitfähigkeit des Aktivmaterials im laufenden Betrieb bestimmen zu können. Aufgrund der Vorkenntnisse und Vorarbeiten am Fraunhofer ISC werden die Untersuchungen dabei auf die negative Elektrode limitiert. Insgesamt unterteilt sich die Doktorarbeit in die zwei Abschnitte. Im ersten Abschnitt werden elektrisch isolierende Stöber-Silica als Additive im negativen Aktivmaterial eingesetzt, um den Einfluss der elektrischen Leitfähigkeit des Additivs auf die elektrochemischen Eigenschaften der Batterie herauszustellen. Untersucht wird dabei die u.a. die Doppelschichtkapazität, die Wasserstoffentwicklung und die dynamische Ladeakzeptanz. Im zweiten Abschnitt steht die elektrische Leitfähigkeit des negativen Aktivmaterials im Fokus. Es wird zunächst eine neue Messmethodik entwickelt, die ihre in-situ- und operando-Bestimmung ermöglicht. Nach einer umfassenden Evaluierung und der Betrachtung verschiedener Betriebsparameter wird die Methodik für eine erste proof-of-concept-Messreihe angewendet, um den Einfluss von Additiven auf die elektrische Leitfähigkeit des negativen Aktivmaterials zu untersuchen. N2 - This dissertation deals with the effect mechanism of electrical conductivity in lead-acid batteries. Although it is believed to play a key role in the "carbon effect", the effect mechanism of electrical conductivity has been studied to lesser extent than other factors so far and accordingly has not yet been fully elucidated. With the aim of closing this research gap, the present dissertation aims to systematically work out the influence of electrical conductivity on lead-acid battery performance and thus contribute to the generation of new development approaches, e.g. in the form of tailored additives. So far, it is still unclear whether the electrical conductivity of the active material alone is relevant or whether this is also influenced by additives. This is mainly due to the fact that suitable measurement methods are lacking and therefore the influence of additives on the electrical conductivity of the active material has been investigated to less extent. Therefore, this work also aims to develop a novel measurement method to determine the electrical conductivity of the active material during operation. Due to the previous knowledge and work at Fraunhofer ISC, the investigations are limited to the negative electrode. Overall, the thesis is divided into two sections. In the first section, electrically insulating Stöber silica particles are used as additives in the negative active material in order to highlight the influence of the electrical conductivity of the additive on the electrochemical properties of the battery. Among other things, the double-layer capacitance, hydrogen evolution and dynamic charge acceptance are investigated. The second section focuses on the electrical conductivity of the negative active material. First, a new measurement methode is developed that allows its in-situ and operando determination. After a comprehensive evaluation and consideration of various operational parameters, the methodology is applied to a first proof-of-concept series of measurements to investigate the influence of additives on the electrical conductivity of the negative active material. KW - Bleiakkumulator KW - Blei KW - Batterie KW - Kohlenstoff KW - Elektrochemie KW - Blei-Säure-Batterie KW - Stöber-Silica KW - operando-Messung KW - Lead-acid batteries KW - Stöber silica Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298397 ER - TY - THES A1 - Eichinger, Stephanie T1 - Die Werke der Dr. Alexander Wacker Gesellschaft für elektrochemische Industrie in Mückenberg. Unternehmenspolitik zwischen Markt und Staat in den Umbrüchen der ersten Hälfte des 20. Jahrhunderts T1 - Dr. Alexander Wacker Gesellschaft für elektrochemische Industrie“ in Mückenberg. Corporate policy between market and state in the upheavals of the first half of the 20th century N2 - Die Dissertation untersucht unternehmenspolitische Entscheidungen eines Chemie-Konzerns im 20. Jahrhunderts aus der Perspektive der Mikroebene. N2 - The historical study analyzes the corporate policy of an electrochemical company on the micro level. She chooses one location of the "Dr. Alexander Wacker Gesellschaft" to show the effects of economic and political framework conditions on corporate decisions. KW - Dr. Alexander Wacker Gesellschaft für Elektrochemische Industrie GmbH KW - Unternehmenspolitik KW - 20. Jahrhundert KW - Elektrochemie KW - Mückenberg KW - Unternehmenspolitik KW - Geschichte 1914-1953 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238687 ER - TY - THES A1 - Settelein, Jochen T1 - Kohlenstoffadditive für negative Elektroden von modernen Blei-Säure Batterien T1 - Carbon additives for negative electrodes of modern lead-acid batteries N2 - In vorliegender Dissertation wurde die Wirkweise von Kohlenstoffadditiven auf die verbesserten Ladeeigenschaften negativer Blei-Kohlenstoff Elektroden untersucht, wodurch ein wichtiger Beitrag für die Weiterentwicklung modernen Blei-Säure Batterien geliefert wurde. Neben der Aufklärung der elektrochemischen Prozesse an Kohlenstoffoberflächen, trug die Arbeit dazu bei, das Verständnis hinsichtlich der Rolle des Kohlenstoffs zur Erhöhung der dynamischen Stromaufnahme zu vertiefen und eine Messmethodik zur Bestimmung der Blei-Affinität von Graphitpulver zu entwickeln. Die wichtigsten Erkenntnisse dieser drei Themenfelder werden an dieser Stelle noch einmal zusammengefasst. Elektrochemische Untersuchungen an amorphem Kohlenstoff: Um ein grundsätzliches Verständnis über die elektrochemische Aktivität von Kohlenstoff in verdünnter Schwefelsäure zu erhalten, wurden in Kapitel 4 die elektrochemisch ablaufenden Reaktion an der Phasengrenze Kohlenstoff/verdünnte Schwefelsäure bestimmt und diskutiert. Als Messmethode diente eine rotierende Scheibenelektrode aus glasartigem Kohlenstoff. Im Gegensatz zu inerten, metallischen Elektroden, zeigte sich an glasartigem Kohlenstoff ein deutlich komplexeres Verhalten. Die Kohlenstoffoberfläche verändert sich in Abhängigkeit des anliegenden Potentials signifikant. Für Potentiale über 1,0 V vs. RHE findet eine Oxidation des Kohlenstoffs statt und eine Zersetzung zu CO2. Diese Veränderungen haben wiederum Auswirkungen auf alle anderen elektrochemisch ablaufenden Reaktionen. So wurde durch umfassende zyklovoltammetrische Untersuchungen und mithilfe der differentiellen elektrochemischen Massenspektroskopie erstmals nachgewiesen, dass die Wasserstoffentwicklung durch kurzzeitige Oxidation des Kohlenstoffs signifikant unterdrückt werden kann. Zusätzliche Überspannungen von über einem Volt legen den Verdacht nahe, dass die Adsorption von Protonen verhindert wird und die Zersetzung des Elektrolyten erst durch Radikalbildung bei extremen Potentialen unter 2,0 V vs. RHE stattfindet. Zukünftig lässt sich dieser Effekt möglicherweise dazu einsetzen, die Nebenreaktion in Blei-Säure Batterien gezielt zu verringern . Struktur-Eigenschafts-Beziehung zwischen externer Kohlenstoffoberfläche und dynamischer Stromaufnahme: Im Anschluss an die elektrochemische Analyse der reinen Kohlenstoffelektrode wurde in Kapitel 5 die Struktur-Eigenschafts-Beziehung von amorphem Kohlenstoff auf die elektrochemische Aktivität negativer Blei-Kohlenstoff-Elektroden systematisch untersucht. Hierzu wurden Elektroden aus sechs verschiedenen negativen Aktivmasserezepturen hergestellt, welche sich einzig im zugemischten Kohlenstoffadditiv unterschieden. Durch die Verwendung von Kohlenstoffpulver mit gezielt eingestellter spezifischer Oberfläche, konnte zum ersten Mal nachgewiesen werden, dass allein die externe Kohlenstoffoberfläche relevant für die Erhöhung der Aktivität der Elektrode ist. Zyklovoltammetrische Messungen zeigten, dass sowohl die Wasserstoffentwicklungsreaktion als auch die Doppelschichtkapazität durch eine zusätzlich in die Aktivmasse eingebrachte externe Kohlenstoffoberfläche verstärkt wird. Erstmals wurde ein linearer Zusammenhang zwischen Doppelschichtkapazität und dynamischer Stromaufnahme festgestellt, der belegt, dass die Erhöhung der dynamischen Stromaufnahme auf einen reinen Oberflächeneffekt zurückzuführen ist. Da sowohl der Strom durch die Wasserstoffentwicklung als auch durch die Ladung der Doppelschicht nicht ausreichen, um die erhöhte Stromaufnahme zu erkären, muss davon ausgegangen werden, dass die Bleisulfatreduktion durch den Kohlenstoff katalysiert wird. Erklärungsansätze sind eine vergrößerte aktive Oberfläche an Bleisulfat aufgrund einer eröhten Porosität und die Adsorption des oberflächenaktiven Ligninsulfonats auf der Kohlenstoffoberfläche anstelle der des Bleisulfats . Blei-Affinität von Graphitpulver: Abschließend wurde in Kapitel 6 eine neue Messmethodik evaluiert, um die Elektrokristallisation von Blei auf Kohlenstoffadditiven zu charakterisieren. Hierfür wurde Bleimetall potentiostatisch aus wässriger Lösung auf graphitische Kohlenstoffelektroden abgeschieden und das Kristallwachstum und die Keimzahldichte anhand mikroskopischer Betrachtungen und Modellierung der Strom-Zeit-Transienten analysiert. Es konnte gezeigt werden, dass sich Blei in partikulärer Form an definierten Stellen der Graphitkristalle abscheidet und dass die Anzahl an Keimstellen durch die Höhe der Abscheidespannung variiert werden kann. In Anwesenheit von Ligninsulfonat wird das Keimwachstum verlangsamt und die ursprünglich instantane Keimbildung in eine progressive überführt. Ein für die Anwendung besonders relevantes Ergebnis lieferte der Vergleich zweier kommerzieller Graphitpulver, welche sowohl im Modellversuch, als auch als Additiv in negativen Bleielektroden eine signifikant unterschiedliche Keimzahldichte aufzeigten. Graphite mit einer hohen Kristallitgröße zeigen eine besonders hohe Bleiaffinität. N2 - This study elucidated the mechanism of carbon additives on the improved charging behavior of negative lead-carbon electrodes, thus making a major contribution to further development of modern lead-acid batteries. In addition to the investigation of the electrochemical processes occurring at the interface between carbon and diluted sulfuric acid, a better understanding of the role of carbon additives in the dynamic charge acceptance was gained. Additionally, a new method was established to characterize the affinity of graphite powder towards lead. The major findings of the three main parts of this work are summarized below. Electrochemical activity of amorphous carbon: The electrochemical reactions that take place at the phase boundary carbon/sulfuric acid were defined in chapter 4 in order to have a better general understanding of the electrochemical activity of carbon in dilute sulfuric acid. The measurements were performed on a rotating disc electrode setup with a glassy carbon electrode. The glassy carbon electrode revealed a much more complex behavior in contrast to inert metallic electrodes. Specifically, the carbon surface changes significantly depending on the applied potential. For potentials above 1.0 V vs. RHE, the carbon electrode is oxidized and decomposes into CO2. This affects all of the other electrochemical reactions. Through an extensive study via cyclic voltammetry and differential electrochemical mass spectroscopy, for the first time, evidence could be provided that the hydrogen evolution reaction can be suppressed significantly by a short anodic oxidation of the carbon electrode. An additional overvoltage of more than one volt suggests an impeded adsorption of protons and a generation of molecular hydrogen only for extremely negative potentials below 2.0 V vs. RHE via hydrogen radicals occurs. This effect might be systematically applied in the future to lower the side reactions in lead-acid batteries. Structure-property relationship between amorphous carbon and the dynamic charge acceptance: Following the analysis of the glassy carbon electrode, the structure-property relationship between amorphous carbon and the dynamic charge acceptance of negative lead-carbon electrodes was systematically investigated in chapter 5. Electrodes with six different active material formulations were produced in which only the type of carbon additive was changed. Through the implementation of carbon powders with a tailored specific surface area it could be proven, for the first time that the external surface area of the carbon particles has an effect on the electrochemical activity of the electrode. Cyclic voltammetry revealed an increase in the hydrogen evolution activity as well as double layer capacitance with higher external carbon surface areas. A linear relationship between the double layer capacitance and the dynamic charge acceptance indicated for the first time that the improved charging behavior of the electrodes originates solely from a surface area effect of the carbon additive. It can be concluded that the increase in charge acceptance has to be generated by a catalyzed reduction of lead sulfate as the hydrogen evolution reaction and the double layer charging cannot deliver as much charging current as is observed in the test. This result could be explained by an increased electrochemical active surface area of lead sulfate either by an improved porosity due to the presence of the carbon or by the adsorption of lignosulfonate onto the carbon surface that would otherwise block the lead sulfate. Lead-affinity of graphite: In chapter 6, a new method was introduced to characterize the electrocrystallization of lead on carbon additives. Potentiostatic deposition from aqueous solution was applied to analyze the nucleation and growth mechanism of lead on graphite powder. The number of active nucleation sites was evaluated by microscopic investigation and by modelling of the current-time transients. The measurements revealed that single lead particles are deposited on defined sites of the graphite surface. The number of active sites can be varied by adjusting the deposition overpotential. Lignosulfonate slows the nucleation process and changes the nucleation from an instantaneous to a progressive regime. The comparison of two different commercially available graphite powders provided an important result with respect to the application. Expanded graphite with a big crystallite size exhibits an exceptionally high affinity towards lead. Initial investigations also indicate that a high number of lead particles on graphite is disadvantageous for generating a high dynamic charge acceptance. In this case, a bigger part of the carbon surface area can be covered by lead and therefore reduces the effect of the carbon surface. KW - Kohlenstoff KW - Batterie KW - Blei KW - Akkumulator KW - Elektrochemie KW - Blei-Säure KW - Kohlenstoffadditive KW - Lead-Acid KW - Carbon Additives Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210986 ER -