TY - THES A1 - Volpp, Miriam T1 - Bestimmung der Plasmaproteinbindung von niedrig affinen Liganden am Beispiel der Ephedra-Alkaloide T1 - Determination of plasma protein binding of low-affinity ligands using Ephedra alkaloids as an example N2 - Zur Bestimmung der Bindungsaffinität von Liganden zu den Plasmaproteinen, insbesondere Albumin, wurden über die Jahre zahlreiche Methoden entwickelt. Die Grundlage dieser Arbeit war die Bestimmung der Plasmaproteinbindung der Ephedra-Alkaloide unter Verwendung einzelner dieser etablierten Methoden. Aufgrund ihres Anwendungsgebiets als Notfallmedikation bei Anästhesie-bedingter Hypotonie und den damit verbundenen Anforderungen an die Pharmakokinetik, sollten die Ephedra-Alkaloide niedrig-affine Liganden der Plasmaproteine darstellen. In der Literatur und in vorhergehenden Arbeiten wurden für die Ephedra-Alkaloide jedoch sehr unterschiedliche, teilweise der Indikation widersprechende Affinitäten bestimmt. Daher sollte im Rahmen dieser Arbeit das Ausmaß der Plasmaproteinbindung der Ephedra-Alkaloide weiter untersucht und die Affinität zu Albumin bzw. anderen Plasmaproteinen im humanen Serum bestimmt werden. Neben der Affinität sollte auch die Stereoselektivität der Bindung genauer betrachtet werden, die bei der Bindung vieler Wirkstoffe eine Rolle spielt. Als Referenzmethode diente die kontinuierliche Ultrafiltration, die auch schon bei Hörst verwendet wurde. Folgende Schlussfolgerungen konnten aus den Ergebnissen dieser Arbeit gezogen werden: 1) Die Ergebnisse der kontinuierlichen Ultrafiltration zeigten, dass die Ephedra-Alkaloide, Ephedrin und Pseudoephedrin, ein nur geringes Ausmaß an Plasmaprotein-bindung von 4 – 9 % gegenüber bovinem und humanem Serumalbumin zeigen. Eine deutlich höhere Plasmaproteinbindung von 19 – 37 % konnte hingegen bei der Verwendung von humanem Serum bestimmt werden. Die Affinität von Pseudoephedrin war dabei jeweils geringer als die von Ephedrin. 2) Diese Ergebnisse mit humanem Serum und die Tatsache, dass Albumin vorwiegend saure Stoffe bindet, legen nahe, dass die Ephedra-Alkaloide vermehrt an andere Plasmaproteine in Serum binden. Erste Messergebnisse mit saurem α1 Glykoprotein bestätigen diese Vermutung. 3) Eine Stereoselektivität konnte nur in geringem Maß bei (+) Ephedrin beobachtet werden, wobei der Unterschied nur im Serum signifikant ist. Pseudoephedrin dagegen zeigte keinerlei Stereoselektivität. Diese Beobachtung passt zu den Schlussfolgerungen der Pfeiffer‘schen Regel zur Stereoselektivität einer Bindung. 4) Andere Sympathomimetika mit einer zusätzlichen Phenolgruppe im Molekül zeigen eine ähnlich niedrige Affinität zu Albumin von ca. 10 %. Eine zusätzliche Phenolgruppe scheint die sauren Eigenschaften des Liganden nicht ausreichend zu erhöhen, um die Affinität zu Albumin signifikant zu steigern. 5) Das tertiäre Kohlenstoffatom am Stickstoff des Ephedrins scheint in gewisser Weise an der Bindung zu Albumin beteiligt zu sein. Sympathomimetika mit einer zusätzlichen Methylgruppe an diesem Kohlenstoffatom, wie Ephedrin, Pseudoephedrin und Oxilofrin, zeigen eine größere Streuung der Messergebnisse. Eine zusätzliche Methylgruppe in dieser Position scheint die Bindung daher sterisch zu hindern. 6) Die Ergebnisse der diskontinuierlichen Ultrafiltration bestätigen weitestgehend die Ergebnisse der kontinuierlichen Ultrafiltration 7) Eine Bestimmung des Ausmaßes der Plasmaproteinbindung von niedrig-affinen Stoffen ist mit den anderen orthogonalen Methoden ACE, NMR und iTC nicht möglich. Diese drei verwendeten Methoden trennen nicht wie die klassischen Methoden den gebundenen vom ungebundenen Wirkstoff, sondern beruhen auf einer Veränderung bestimmter Messparameter: bei der ACE die Migrationszeit, bei der NMR-Spektroskopie die chemische Verschiebung der Signale bzw. der Diffusionskoeffizient und bei der iTC die frei werdende Bindungswärme. Bei allen drei Methoden war die Änderung der Messgröße aufgrund der niedrigen Plasmaproteinbindung zu gering, um auswertbar zu sein. 8) Eine Störgröße bei die orthogonalen Methoden war vielfach auch das Albumin selbst bzw. dessen Eigenschaften. Bei der Affinitäts-Kapillarelektrophorese sind physiologische HSA-Konzentrationen wegen des starken Basislinienrauschens nicht messbar. Zudem bewirkt der Albuminzusatz im Trennpuffer eine Viskositätsänderung, die den EOF verlangsamt und so die Messung stört. Bei der NMR-Spektroskopie können wegen der Überlagerung der Signale durch die breiten Albuminbanden weder Veränderungen in der chemischen Verschiebung noch des Diffusionskoeffizienten zuverlässig bestimmt werden. In der iTC erschwerte die Schaumbildung der Lösung, die durch die Oberflächenaktivität des Albumins verursacht wird, die Messung. In dieser Arbeit konnte somit das Ausmaß der Plasmaproteinbindung der Ephedra-Alkaloide mit verschiedenen Methoden erfolgreich bestimmt werden. Damit bestätigte diese Arbeit, dass die Ephedra-Alkaloide, wie deren Indikation vermuten lässt, zu den niedrig affinen Liganden des Albumins zählen. Um genauer eingrenzen zu können durch welche Plasmaproteine im Blutserum die Ephedra-Alkaloide transportiert werden, sollten die Untersuchungen zum sauren α1-Glykoprotein fortgesetzt und gegebenenfalls durch weitere Bestimmungen mit anderen Plasmaproteinen ergänzt werden. Die Ergebnisse dieser Arbeit haben auch gezeigt, dass viele der unzähligen Methoden zur Untersuchung der Plasmaproteinbindung bei der Bestimmung von niedrig affinen Liganden ihre Grenzen haben. Nach wie vor sind zur Bestimmung einer niedrigen Bindungsaffinität weiterhin die klassischen Methoden, wie die kontinuierliche Ultrafiltration, Mittel der Wahl. Nicht zuletzt deshalb erfreuen sich diese Methoden auch heute noch großer Beliebtheit. N2 - Over the years many methods have been developed to determine the binding affinity of ligands towards the plasma proteins, especially to albumin. The focus of this thesis was the determination of the plasma protein binding of the Ephedra alkaloids using several of those long established methods. Due to their application as emergency drugs for anaesthetic induced hypotension and the associated demands on pharmacokinetics, Ephedra alkaloids should display a low binding affinity towards plasma proteins. Yet in literature and in previous studies the Ephedra alkaloids showed a great variety of binding affinities, in parts even contradictory to their indication. Therefore the Ephedra alkaloids’ extent of plasma protein binding was further examined and the affinity towards albumin and other plasma proteins in human serum determined in the course of this study. Next to its affinity the bindings’ stereoselectivity was analysed as well, playing an important role in the binding of many drugs. The continuous ultrafiltration served as a reference method formerly also used by Hörst. The following conclusions can be drawn from the results of this study: 1. The results of the continuous ultrafiltration experiments show that the Ephedra alkaloids, ephedrine and pseudoephedrine, only have a low extent of 4 – 9 % of plasma protein binding towards bovine and human serum albumin. However using human serum a significantly higher plasma protein binding of 19 – 37 % can be measured. The affinity of pseudoephedrine was lower than ephedrine each time. 2. These results with human serum and the fact that albumin mainly binds acidic substances leads to the conclusion that Ephedra alkaloids principally bind to other plasma proteins in serum. First findings with α1 acid glycoprotein corroborate this hypothesis. 3. A minor stereoselectivity was observed only for (+) ephedrine, although the difference was merely significant in human serum. Pseudoephedrine on the other hand didn’t display any kind of stereoselectivity. These observations coincide with the reasoning of Pfeiffer’s rule regarding the stereoselectivity of binding. 4. Other sympathomimetics with an additional phenolic group in the molecule demonstrate a similar low binding affinity towards albumin of approx. 10 %. An additional phenolic group doesn’t seem to elevate the acidity of the ligand sufficiently in order to increase the affinity towards albumin significantly. 5. The tertiary carbon atom bound to the nitrogen in ephedrine appears to be involved in the binding to albumin in some way. Measured results display a higher variance for sympathomimetics with an additional methyl group in this position like ephedrine, pseudoephedrine and oxilofrine. The additional methyl group seems to hinder the binding sterically. 6. The results of the discontinuous ultrafiltration confirm the results of the continuous ultrafiltration experiments for most parts. 7. The determination of the extent of plasma protein binding is not feasible with the other orthogonal methods ACE, NMR and iTC for low affinity ligands. Those three methods don’t rely on the separation of bound and unbound drug as the classical methods do. Instead they are based on the alteration of certain measuring parameters: for the ACE it’s the migration time, in NMR spectroscopy it’s the chemical shift or the diffusion coefficient and using iTC it’s the released binding heat. For all three methods the change of those parameters was too low to be evaluable. 8. One disturbance with the orthogonal methods was often albumin itself or its properties. In affinity capillary electrophoresis physiological HSA concentrations are not measureable due to the high background noise caused by albumin. Furthermore the addition of albumin in the background electrolyte leads to a change in viscosity, slowing the EOF and thus falsifying the measurement. Using NMR spectroscopy neither changes in the chemical shift nor the diffusion coefficient can be reliably determined due to overlap of the albumin and ligand signals. During iTC experiments the foaming of the solution caused by the surface activity of albumin itself hinders the measurement. In summary the extent of plasma protein binding was successfully determined for the Ephedra alkaloids using different measuring techniques. Thereby this study confirmed that the Ephedra alkaloids are low affinity ligands of albumin as was suggested by their current use in drug therapy. To narrow down by which plasma proteins the Ephedra alkaloids are transported in serum further analysis with α1 acid glycoprotein and if applicable with other plasma proteins is necessary. The results of this study also show that countless methods for determining the extent of plasma protein binding fail to produce reliable results for low affinity ligands. After all the classical methods such as continuous ultrafiltration are still the methods of choice when it comes to determine low affinity binding. If nothing else this is the reason why those methods are still so popular to date. KW - Proteinbindung KW - Plasmaproteine KW - Serumalbumine KW - Ultrafiltration KW - Ephedrin KW - Kapillarelektrophorese Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219619 ER - TY - THES A1 - Borst, Claudia T1 - Kapillarelektrophoretische Reinheitsanalytik verschiedener Arzneistoffe des Europäischen Arzneibuchs T1 - Capillary electrophoretic impurity analysis of different drugs of the European Pharmacopoeia N2 - Die Kapillarelektophorese (CE), deren Trennprinzip auf der Wanderung geladener Teilchen im elektrischen Feld basiert, ist eine Methode, die in verschiedenen Techniken angewandt werden kann. Sowohl die wässrige Kapillarzonenelektrophorese (CZE) als auch die wasserfreie CE (NACE), aber auch die elektrokinetische Chromatographie mittels Mikroemulsion (MEEKC) wurden in dieser Arbeit für die Reinheitsanalytik der im Europäischen Arzneibuch beschriebenen Wirkstoffe Ethambutol, Quetiapin, Ephedrin sowie Levodopa und deren jeweils strukturverwandter Substanzen benutzt. Der Wirkstoff Ethambutol wird in der (S,S)-Form verwendet, die im Ph. Eur. 7 als Dihydrochlorid aufgeführt ist. Um eine Trennmethode für (S,S)-Ethambutol, sein Enantiomer und die achirale meso-Verbindung entwickeln zu können, wurden die beiden stereoisomeren Verunreinigungen aus 2-Amino-1-butanol und Diethyloxalat synthetisiert. Zur Trennung dieser drei Ethambutol-Isomere wurde CZE als Methode gewählt. In saurem Phosphatpuffer musste eine hohe Probenkonzentration von 1 mg/ml verwendet werden, um die Substanzen mit UV detektieren zu können (λ: 200 nm). In alkalischem Tetraboratpuffer war das Chromophor dank der freien Elektronenpaare der Stickstoff-Moleküle besser ausgeprägt und die Intensität der Peaks deutlich intensiver. Als chirale Selektoren wurden die nativen α-, β- und γ-Cyclodextine (CDs) und verschiedene derivatisierte β-CDs eingesetzt. Die Methode wurde vielfach in Bezug auf Molarität und pH-Wert der Puffer, Konzentration der verschiedenen chiralen Selektoren, Spannung und Temperatur modifiziert. Jedoch konnte keine Trennung der Stereoisomere erreicht werden. Eine CD-modifizierte MEEKC-Methode wurde herangezogen, um die Racemate der Aminosäuren Dopa, Methyldopa, Tyrosin und Phenylalanin voneinander zu trennen. Dazu wurde eine Mikroemulsion (ME) aus Ethylacetat, SDS, 1-Butanol, Phosphatpuffer, sulf. β-CD und, wenn nötig, aus dem organischen Modifier 2-Propanol eingesetzt. Für jede DL-Aminosäure wurde die Zusammensetzung der ME als auch die Geräteeinstellungen (Spannung, Temperatur) optimiert. Die Trennung von DL-Dopa konnte ohne Zugabe eines organischen Modifiers durchgeführt werden. Auf Grundlage dieser individuellen Methoden wurden zwei CD-modifizierte MEEKC-Methoden entwickelt, mit denen alle vier untersuchten Racemate getrennt werden konnten. Die abschließende Validierung in Bezug auf Wiederholpräzision (Auflösung, Migrationszeiten, Verhältnis der korrigierten Peakflächen und Anzahl der theoretischen Böden) und Detektionsgrenzen zeigte, dass die Methoden präzise Ergebnisse liefern. Die Technik der MEEKC wurde auch zur Trennung von Ephedrin-Derivaten genutzt. Wedig et al. konnten die Racemate von Ephedrin, Pseudoephedrin, N-Methylephedrin und Norephedrin mit einer HDAS-β-CD-modifizierten CZE-Methode in einem Lauf basislinientrennen, indem ein 50 mM Phosphatpuffer, pH 3,0 als HGE eingesetzt wurde. Aus diesem HGE und den organischen Bestandteilen, die zur Trennung der Aminosäuren führten, wurde eine ME hergestellt. Entgegen der Methode von Wedig et al. konnte mittels HDAS-β-CD keine zufriedenstellende Trennleistung erreicht werden. Durch Austausch des chiralen Selektors gegen sulf. β-CD und Modifizierung des Phosphatpuffers in Ionenstärke und pH-Wert konnte für alle vier Epedrin-Derivate eine Basislinientrennung erzielt werden. Diese MEEKC-Methode wurde auf weitere Ephedrin-Derivate angewandt, wodurch das racemische 2-(Dibutylamino)-1-phenyl-1-propanol partiell, die Racemate von Adrenalin, 2-Amino-1-phenylethanol und Diethylnorephedrin vollständig voneinander getrennt werden konnten. Während mit der HDAS-β-CD-modifizierten CZE-Methode alle vier Ephedrin-Derivaten in einem Lauf getrennt werden konnten, hat die MEEKC-Methode den Vorteil mit dem kostengünstigeren sulf. β-CD auszukommen. Schlussendlich wurde eine Reinheitsanalytik von Quetiapin und seinen verwandten Substanzen Quetiapindesethanol, Quetiapin-N-Oxid und Quetiapinlactam entwickelt. Da Quetiapinlactam fast ausschließlich in organischen Lösungsmitteln löslich ist, sollte eine wasserfreie CE-Methode (NACE) eingesetzt werden. Zwar konnte eine Methode entwickelt werden, deren HGE aus Methanol, Acetonitril, Ammoniumacetat und Essigsäure bestand, und mit der Quetiapin und seine drei verwandten Substanzen sehr gut getrennt werden konnten. Allerdings konnte sie aufgrund von Stromabbrüchen nicht validiert werden. Alternativ wurde eine wässrige, gut reproduzierbare CZE-Methode gefunden, deren Elektrolytlösung aus einem 80 mM Phosphatpuffer, pH 4.0 bestand. Aufgrund der Wasserunlöslichkeit von Quetiapinlactam konnten so nur Quetiapin und die Verunreinigungen Quetiapindesethanol und Quetiapin-N-Oxid erfasst werden. Abschließend wurde die CZE-Methode validiert, wodurch die hohe Präzision der ermittelten Werte gezeigt werden konnte. N2 - The separation mechanism of capillary electrophoresis (CE) is based on the mobility of ions in an electric field. CE is a versatile technique, which can be operated in different modes. In this work, both aqueous capillary zone electrophoresis (CZE) and nonaqueous CE (NACE) and microemulsion electrokinetic chromatography (MEEKC) were investigated. Using these CE methods, impurity analysis was accomplished for serveral pharmaceuticals, which are described in the European Pharmacopoeia (Ph. Eur.): ethambutol, quetiapine, ephedrine, levodopa and correspondingly related substances. The active agent ethambutol is used in the (S,S)-configuration and in Ph. Eur. 7 the monograph describes the dichloride of the substance. In order to develop a separation method for (S,S)-ethambutol, its enantiomer and the achiral meso-compound were synthesized by the reaction of 2-amino-1-butanol and diethyloxalate. For the separation of these ethambutol compounds the CZE technique was chosen. After using an acid phosphate buffer, the concentration of the sample solution had to be set at 1 mg/ml for an sufficient UV adsorption (λ: 200 nm). After using a basic tetraborate buffer, the chromophore was more sensitive due to the electron pair of the nitrogen molecule, which led to higher peak intensity. Native α-, β- and γ-cyclodextins (CDs) and some derivatives of β-CD were added to the background electrolyte (BGE) as chiral selectors. The CZE method was modified in many ways, e. g. in molarity and pH value of the BGE, in concentration of the chiral selectors, in voltage and in temperature. In spite of various variations, the separation of the stereoisomers was not successful. A CD-modified MEEKC method was applied to separate the racemates of dopa, methyldopa, tyrosine and phenylalanine. For this purpose, a microemulsion (ME) was employed, which consisted of ethyl acetate, SDS, 1-butanol, phosphate buffer, sulf. β-CD and 2-propanol, used as an organic modifier, if necessary. For each DL-amino acid the composition of the ME and the instrument settings (voltage, temperature) were optimized. The separation of DL-dopa was accomplished without an organic modifier. Based on the methods evolved individually, two CD-modified MEEKC methods were developed to separate all four racemates. The concluding validation of these methods with respect of repeatability (resolution, migration time, ratio of the corrected peak areas, and number of theoretical plates) and limit of detection showed that the methods give precise results. The technique of MEEKC was also used for the separation of ephedrine derivatives. By means of a HDAS-β-CD-modified CZE method, Wedig et al. achieved baseline separation of racemic ephedrine, pseudoephedrine, N-methylephedrine and norephedrine in one run. In their experiment the BGE consisted of 50 mM phosphate buffer, pH 3.0. An ME was composed of this buffer as aqueous phase and the organic compounds, which formed the oil-phase of the ME for the amino acids. Contrary to the CZE method of Wedig et al., who used HDAS-β-CD, no satisfying resolution was observed. Replacing the chiral selector HDAS-β-CD with sulf. β-CD and modifying the phosphate buffer in ionic strength and pH value, led to baseline separation of the four mentioned ephedrine derivatives eventually. This MEEKC method was subjected to the separation of other ephedrine derivatives. So racemic 2-(dibutylamino)-1-phenyl-1-propanol could partly be separated, whereas complete separation could be observed for racemic adrenaline, 2-amino-1-phenylethanol and diethylnorephedrine. Whereas the MEEKC method is much cheaper by using sulf. β-CD, the application of the HDAS-modified CZE method resulted in the separation of all four racemic ephedrine alkaloids in one run. Finally, an impurity analysis of quetiapine and its related compounds quetiapine desethanol, quetiapine-N-oxide and quetiapine lactam was develop. The molecular structure of quetiapine lactam needed to be clarified, as this compound had not been described before. By using mass spectrometric (MS) as well as infrared (IR) and NMR investigations, the substance could be identified: Dibenzo[b,f][1,4]thiazepine-11(10H)one. As quetiapine lactam was found to be nearly insoluble in water and aqueous solutions, an NACE method had to be applied. Indeed, a method was developed with a BGE consisting of methanol, acetonitril, ammonium acetate and acetic acid. Thereby, the separation of quetiapine and its three mentioned impurities was observed with high resolution values. However, validation was impossible, because of numerous aborts of the current. Alternatively, an aqueous and highly reproducible CZE method was found with a BGE composed of 80 mM phosphate buffer, pH 4.0. Due to the water insolubility of quetiapine lactam, only quetiapine desethanol and quetiapine-N-oxide could be analysed as impurities. Finally, the aqueous CZE method was validated; the high precision of the results could be verified. KW - Kapillarelektrophorese KW - Arzneimittel KW - Verunreinigung KW - Qualitätskontrolle KW - Europäisches Arzneibuch KW - chirale Trennung KW - Ethambutol KW - Aminosäuren KW - Ephedrin KW - Quetiapin KW - MEEKC KW - CZE KW - NACE KW - Cyclodextrine KW - capillary electrophoresis KW - chiral separation KW - cyclodextrin KW - amino acids Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56243 ER -