TY - THES A1 - Leisegang, Markus T1 - Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde T1 - A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobe N2 - Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. N2 - Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale. KW - Rastertunnelmikroskopie KW - Ladungstransport KW - Molekül KW - Nanosonde KW - Ballistischer Transport KW - Molekulare Sonde KW - Tautomerisation KW - Molekularer Schalter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250762 ER - TY - THES A1 - Schmitt, Stefan T1 - Adsorbatinduzierte richtungsabhängige Facettierung und selbstorganisierte Domänen-Musterbildung auf vizinalen Ag(111)-Oberflächen T1 - Adsorbate-induced facetting reconstruction and self-organized domain patterning of vicinal Ag(111) surfaces N2 - Die vorliegende Arbeit beschäftigt sich mit den strukturellen Aspekten einer adsorbat-induzierten Facettierung von vizinalen Ag(111)-Oberflächen. Bei dem Adsorbat handelte es sich um das organische Molekül Perylen-3,4,9,10-Tetracarbonsäure-Dianhydrid (PTCDA). Die Experimente wurden unter Ultrahochvakuum-Bedingungen durchgeführt, die Charakterisierung erfolgte hauptsächlich mit den Messmethoden Rastertunnelmikroskopie (STM) und niederenergetische Elektronenbeugung (LEED). Das planare Farbstoffmolekül PTCDA adsorbiert präferentiell an den Stufenkanten der verwendeten 8.5° Ag(111)-Vizinaloberflächen und induziert bei geeigneten Präparationsbedingungen eine Rekonstruktion in stark gestufte Facettenflächen und in stufenfreie (111)-Terrassen. Die beobachteten Facetten sind für das System PTCDA/Ag charakteristisch und stellen durch eine molekulare Überstruktur richtungsselektiv stabilisierte Ag-Kristallebenen dar. Durch die Variation der Stufenrichtung der Startoberfläche wurde eine Vielzahl von Facettentypen erhalten und nach Miller indiziert. In ihrer Gesamtheit erlauben sie einen Rückschluss auf das Aussehen der Gleichgewichtskristallform eines mit PTCDA bedeckten Ag-Kristalles und damit auf das richtungsabhängige Benetzungsverhalten von Ag. Aus der Sicht des Substrates bewirkt das Adsorbat eine massive Erhöhung der Steifheit der Stufen. Die durch eine molekulare Überstruktur stabilisierten Facettenflächen übernehmen die in der Kristallstruktur des Substrates angelegten Stufenrichtungen. Die gefundene Ausbildung von zwei typischen Facettensteigungen ist jedoch nicht durch die Ag-Kristallstruktur motivierbar. Die Facettierung wurde im Rahmen einer speziellen Adaption des Konzepts der Thermodynamik auf ebene gestufte Oberflächen als Orientierungsphasenseparation beschrieben. Dieses Konzept erlaubt eine korrekte Beschreibung der beobachteten lokalen Phänomene und zeigt zudem auf, dass das molekulare Gas, welches in den Messungen nicht erfasst wurde, eine wichtige Rolle bei der Rekonstruktion spielt. Es ergaben sich wichtige Indizien für die Existenz einer kritischen Inselgröße für PTCDA auf Ag(111). Es wurde eine vollständige strukturelle Analyse aller stabilen molekularen Überstrukturen auf vizinalen Ag(111)-Oberflächen durchgeführt. Es wurden insgesamt 16 solcher Überstrukturen gefunden, von denen bisher nur 3 Strukturen bekannt und veröffentlicht waren. Dichte und Kommensurabilität der Facettenüberstrukturen sind systematisch vom Stufentyp der Oberfläche abhängig. Die Frage nach dem Ursprung der beiden charakteristischen Facettensteigungen ist mit der Existenz von zwei Typen von Überstrukturgrenzen verknüpft. Die Grenze bestimmt die Lage der fischgrätartigen Überstruktur zu den Stufenkanten und die Länge und die Breite des Moleküls die beiden charakteristischen Stufenabstände. Letzteres geschieht vermöge einer lokalen Wechselwirkung der PTCDA-Moleküle mit den Stufen. Die Überstrukturgrenzen erweisen sich als wichtiges Element der Rekonstruktion. Es wurden außerdem die Abhängigkeiten der verschiedenen, aneinander angrenzenden Überstrukturen aufgezeigt. Auf den (111)-Terrassen fanden sich 3 metastabile Ausnahme-Strukturen, welche einen vertieften Einblick in die komplexe Bildungskinetik der bisher bekannten stabilen (111)-Struktur erlauben. Die Facetten bilden zusammen mit den benachbarten (111)-Terrassen regelmäßige, einem Reflexionsgitter ähnliche Muster mit einer Strukturweite von 5 bis 75nm. Die beobachteten Strukturweiten erreichen bei ausgedehntem Tempern typische Maximalwerte. STM-Messungen zeigen den Einfluss einer langreichweitigen Wechselwirkung zwischen den Facetten, vermittelt über elastische Eigenschaften des Substrates. Die Muster können als selbstorganisierte Zweiphasensysteme im thermodynamischen Gleichgewicht erklärt werden. Die Facetten wirken wie repulsiv wechselwirkende Defekte in einem elastischen Medium. Die Eignung dieser Muster als Templat wurde in Kooperation mit einer anderen Arbeitsgruppe am Beispiel der selektiven Deposition von Eisen belegt. N2 - This thesis investigates structural aspects of adsorbate-induced facetting of vicinal Ag(111) surfaces. It is mainly based on scanning tunneling microscope (STM) and low energy electron diffraction (LEED) experiments performed under UHV conditions. The planar dye-molecule perylene-3,4,9,10-tetracarboxilicacid-dianhydride (PTCDA) adsorbes preferentially at the step edges of the 8.5° Ag(111) vicinal surfaces used in the experiments. It causes a facetting reconstruction by the formation of (111) terraces and facets with a high step density. A variation of the step direction of the unreconstructed start surface revealed the existence of a variety of different facet types. Each of them is stabilized by a typical molecular superstructure. The facets observed are independent of the details of reconstruction and therefore characteristic for PTCDA on Ag. They can be used to predict the equilibrium crystal shape of PTCDA-covered Ag and the anisotropic wetting behavior of a Ag crystal. From the viewpoint of the substrate, the adsorbate superstructure causes a pronounced increase of the stiffness of the facet planes, but creates only steps with ''native'' directions. Moreover, two distinct preferential inclinations of facets were observed, which can only be explained by the selective influence of the adsorbate superstructure. In terms of thermodynamics, the facetting reconstruction can be described as an orientational phase separation, adapted to the constraints of planar surfaces. This concept is capable of explaining the local facetting phenomena. The formalism used predicts an important role of nucleation kinetics. This aspect is taken into account by introducing an additional phase of mobile molecules (2D molecular gas), which cannot be measured directly. Furthermore, strong arguments for the appearance of a critical island size for the PTCDA/Ag(111) superstructure were found. This work presents structural information of all stable superstructures of PTCDA on vicinal Ag(111) surfaces. Altogether 16 such superstructures were found, 3 of which had been observed and published before. Density and commensurability were found to systematically depend on the step-structure. The two preferred inclinations of facets are related to two characteristic types of domain boundaries of the herringbone superstructure to the adjacent (111)-terrace. Within the superstructure, local bonding of either one molecular species adhering perpendicular or one adhering parallel to the step-edge decides about the inclination of the surface. Consequently, the superstructure domain boundaries have profound influence on the details of the reconstruction. Additionally, under certain preparation conditions the (111) superstructure controls the facetting reconstruction. On the (111) terraces, small islands of metastable superstructures were found. A comparison with the well known stable (111) structure allows insight into the complex nucleation kinetics of this structure. Facets and (111) terraces form a regular grating-like domain pattern with a variable structural width of 5 to 75nm. This width saturates upon prolonged annealing. STM measurements show direct evidence for a long-range interaction between facet edges, causing a deformation of the surface between two facets. The domain patterns can be interpreted as two interacting phases in thermodynamic equilibrium and facets as interacting defects on an elastic surface. In cooperation with another group grating-like domain patterns on the nanometer-scale were used as a template for selective Fe adsorption. KW - Adsorbat KW - Perylendianhydrid KW - Überstruktur KW - Silber KW - Festkörperoberfläche KW - Selbstorganisation KW - Ag KW - Vizinal KW - Rekonstruktion KW - Molekül KW - Facette KW - Ag KW - vicinal KW - reconstruction KW - molecule KW - facet Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25088 ER - TY - THES A1 - Vogt, Gerhard Sebastian T1 - Adaptive Femtosekunden-Quantenkontrolle komplexer Moleküle in kondensierter Phase T1 - Asaptive femtosecond quantum control of complex molecules in the condensed phase N2 - Die Bildung verschiedener Isomere durch Änderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung für viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gelösten Modellmoleküls mittlerer Größe mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In Übereinstimmung mit den von ihnen durchgeführten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfläche nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molekül entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgeführt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erhöht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien über den Isomerisierungsprozess haben weiterführende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch können molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erhöhung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine Möglichkeit der effektiven Beeinflussung der Reaktionsdynamik eröffnen. Mit der weiterentwickelten Methode können solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zusätzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollständigt. Häufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen Lösungen und sollten daher gesondert untersucht werden. Dazu können verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch ändert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenlänge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgeführt. Durch zusätzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und bestätigt werden. In einem abschließenden Experiment wurde die Abhängigkeit der Anregeeffizienz eines komplexen, in Methanol gelösten Farbstoffmoleküls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel ähnlich gut erfüllen können. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften können einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen ermöglichen und Informationen über die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr über verschiedene Prozesse unterschiedlicher Molekülklassen zu lernen ist ein viel versprechendes und realistisches Ziel für die Zukunft. Die präsentierten Experimente zeigen, dass es möglich ist, geometrische Änderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern. N2 - The formation of different isomers by rearrangement of the molecular structure plays a substantial role in many areas in physics, chemistry and biology. The control of such reactions is therefore a very appealing task. Directly connected to the control is the observation and characterization of the dynamics. Within the last years, adaptive femtosecond quantum control has proven to be a very powerful tool to control chemical reactions. Prototype experiments based on simple reactions already have shown that the concept of femtosecond quantum control is also applicable for molecules in a condensed environment. This thesis deals with the observation and control of such isomerization reactions in chemically and biologically relevant systems. Therefore the reaction dynamics of a medium size prototype molecule of the family of the cyanine dyes in solution were investigated by transient absorption spectroscopy, by fluorescence upconversion and by anisotropy spectroscopy. In cooperation with F. Santoro and R. Improta a detailed and reliable description of the overall kinetics was achieved, evidencing a two-timescale dynamics on the first excited potential energy surface after excitation. After decaying through a conical intersection, the molecule isomerizes either to the thermodynamically most stable trans isomer or to two less stable product isomers. Adaptive femtosecond quantum control experiments were performed on this system with the objective to control the isomerization process. Both enhancement as well as reduction of the isomerization efficiency, i.e the relative yield of the educt to the product isomers, were achieved. Single parameter control mechanisms such as applying different chirps or varying the excitation laser pulse energy failed to change the ratio of the photoproducts. These control studies on the isomerization process of a medium size molecule in the condensed phase motivated experiments on the very complex biological system of retinal embedded in bacteriorhodopsin. The traditional pump-dump-probe method was extended to a new pump-shaped-dump-probe scheme to control molecular systems in those regions of the potential-energy landscape where the decisive reaction step occurs. Different theoretical simulations on the enhancement of the isomerization yield predict that pump-dump-repump-probe mechanisms can control the reaction dynamics. Using the novel scheme, such a four-pulse technique with a double-pulse-like shaped dump pulse can be realized and its impact on the reaction process can be systematically investigated. With further parameterized scans of specialized phase functions, such as different orders of chirp, the dynamics of the dumping process has been illuminated. Finally by adaptively shaping the dump pulse the information from the systematic scan has been refined and completed. Very often, adaptively obtained optimal laser pulse shapes are very complicated and can contain structures, that contribute to a certain control mechanism to different degrees. Consequently, it can be difficult to identify the control mechanism of such optimal pulses. Especially pump-dump scenarios often play an important role in the acquired optimal solution and therefore deserve to be investigated separately. For this, colored double pulses are employed and both the pulse separation and the relative amplitude or phase difference of the two subpulses are systematically scanned. This further developed method was first characterized by simple experiments. Then, a setup forcing double-pulses to obtain the highest third harmonic yield was designed. The control objective of maximizing the third harmonic yield has the advantage that the optimal pulse shape can be calculated and intuitively understood. Adaptive femtosecond quantum control experiments were performed with this control objective. With additional measurements of colored double-pulse control landscapes the control mechanism of the adaptively obtained optimal pulse shape can be extracted and confirmed. In a further experiment, the dependence of the excitation efficiency of a complex dye molecule dissolved in methanol on selected pulse shapes probed by transient absorption spectroscopy was studied. The results show that very different pulse shapes are equally adequate to fulfill the control objective. Colored double pulse scans thus can give an insight into the control mechanism of adaptively obtained pulse shapes and provide information about reaction dynamics. Investigations on various processes of different molecular classes using the methods developed and applied here are a promising and realistic goal for the near future. The presented experiments demonstrate a successful manipulation of geometrical rearrangement reactions in chemically and biologically relevant systems by adaptive femtosecond quantum control. KW - Molekül KW - Isomerisierungsreaktion KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Adaptivregelung KW - Isomerizierung KW - Quantenkontrolle KW - transiente Absorption KW - kondensierte Phase KW - flüssige Phase KW - isomerization KW - quantum control KW - transiente absorption spectroscopy KW - condensed phase KW - liquid phase Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20222 ER -