TY - THES A1 - Derrer, Carmen T1 - Biophysikalische Aufschlüsselung des Transportzyklus von ZmSUT1, einem H+/Saccharose Symporter aus Mais T1 - Biophysical analysis of the transport cycle of ZmSUT1, a H+/sucrose symporter from maize N2 - Die Mesophyllzellen vollentwickelter Blätter stellen den Hauptort der Photosynthese höherer Pflanzen dar. Diese autotrophen Zellen (source-Gewebe) produzieren einen Überschuss an Kohlenstoff-Assimilaten, die für die Versorgung anderer heterotropher Gewebe und Organe, wie z.B. Früchten oder Wurzeln (sink-Gewebe), genutzt werden. Das Langstrecken-Transportsystem höherer Pflanzen, das Phloem, transportiert die Photoassimilate durch den gesamten Pflanzenkörper. Der zwischen source- und sink-Geweben herrschende hydrostatische Druckunterschied wird von osmotisch aktiven Substanzen generiert und treibt den Massenstrom in diesem Gefäßsystem an. Der nicht-reduzierende Zucker Saccharose stellt in den meisten höheren Pflanzen die Haupttransportform der photosynthetisch hergestellten Kohlenstoffverbindungen im Phloem dar. Protonen-gekoppelte Saccharosetransporter reichern Saccharose im Phloemgewebe mit einer 1000-fach höheren Konzentration (bis zu 1M), verglichen zum extrazellulären Raum, an. Aufgrund dieser einzigartigen Fähigkeit üben diese Carrier eine essentielle Rolle in der Phloembeladung aus und gewährleisten so die Versorgung der gesamten Pflanze mit Photoassimilaten. Saccharosetransporter können diese Energie-aufwändige Aufgabe nur durch eine enge Kopplung des zeitgleichen Transports von Saccharose und Protonen bewerkstelligen. Molekulare Einblicke in diesen physiologisch außerordentlich wichtigen Prozess der Zuckertranslokation sind jedoch bis heute immer noch sehr lückenhaft. Im Rahmen dieser Arbeit wurde der Saccharosetransporter ZmSUT1 aus Mais im heterologen Expressionssystem der Xenopus Oozyten exprimiert. ZmSUT1 generiert in Oozyten ungewöhnlich hohe Ströme im µA-Bereich, was diesen Zuckertransporter für präzise elektrophysiologische Messungen geradezu prädestiniert. Erste elektrophysiologische Messungen zur Substratspezifität zeigten, dass der synthetische Süßstoff Sucralose kein Substrat für ZmSUT1 darstellt. Darüber hinaus gelang es, Sucralose als kompetitiven Inhibitor der Saccharose-induzierten Transportströme von ZmSUT1 zu identifizieren. Die Verwendung dieses Saccharose-Derivats ermöglichte es, den Transportmechanismus in einzelne Schritte zu zerlegen und diese zu quantifizieren. Durch hochauflösende elektrophysiologische Messungen konnten transiente Ströme in der Abwesenheit jeglichen Substrats detektiert werden, die jedoch in der Anwesenheit sättigender Saccharosekonzentrationen erloschen. Diese sogenannten presteady-state Ströme (Ipre) zeichneten sich durch eine schnelle und eine langsame Komponente in der Relaxationskinetik der Ströme aus. Ipre konnten mit dem Binden der Protonen an den Transporter innerhalb des elektrischen Feldes der Membran in Verbindung gebracht werden. Somit führte die Analyse der presteady-state Ströme zur Aufklärung des ersten Schritts - dem Binden der Protonen - im Transportzyklus von ZmSUT1. Interessanterweise reduzierte der kompetitive Inhibitor Sucralose die langsame Komponente der presteady-state Ströme in Abhängigkeit von der Sucralosekonzentration, während die schnelle Komponente von Ipre unbeeinflusst blieb. Um dieses Verhalten erklären zu können und einen weiteren Schritt im Transportzyklus von ZmSUT1 zu studieren, wurde die Methode der Spannungsklemmen-Fluorometrie zur Untersuchung der Konformationsänderung von ZmSUT1 etabliert. Tatsächlich gelang es, zum ersten Mal die intramolekulare Bewegung eines pflanzlichen Transportproteins zu visualisieren. Detaillierte Analysen zeigten, dass die Konformationsänderungen von ZmSUT1, unabhängig von Saccharose, mit einer schwachen pH-Abhängigkeit auftraten. Interessanterweise wurde die Beweglichkeit des Transporters durch die Applikation des kompetitiven Inhibitors Sucralose deutlich reduziert. Dieser Effekt deutet, zusammen mit dem Sucralose-induzierten Verschwinden der langsamen Komponente der Ipre darauf hin, dass Sucralose den Transporter in seiner auswärts-gerichteten Konformation arretiert. Somit repräsentiert die Zugänglichkeit der extrazellulären Protonenbindestelle und folglich die Konformationsänderung den Geschwindigkeits-bestimmenden Schritt im Reaktionszyklus von ZmSUT1. Zusammenfassend gelang es in dieser Arbeit, das Binden der Protonen und den Zusammenhang mit der Bewegung des Proteins, von einer auswärts-gerichteten in eine einwärts-gerichtete Konformation, aufzuklären. Mit der Hilfe der Erkenntnisse aus dieser Arbeit konnte ein mechanistisches Modell für den Transportzyklus von ZmSUT1 entwickelt werden, anhand dessen alle Ergebnisse schlüssig erklärt und diskutiert werden konnten. N2 - Higher plants produce carbohydrates via photosynthesis in mesophyll cells of their leaves. These autotrophic cells export the excess of photoassimilates (source-tissue) to supply heterotrophic tissues, such as fruits and roots (sink-tissues), with carbon compounds. According to the Munch hypothesis, osmolytes generate the hydrostatic pressure difference between the source- and sink-tissues that drives the mass flow within the phloem vasculature. In most higher plants the non-reducing disaccharide sucrose represents the main mobile carbohydrate. Proton-driven sucrose transporter play a pivotal role in loading the phloem vessels for long distance transport of sucrose throughout the entire plant body. The strongly hyperpolarized plant membrane potential and the exceptional ability of sucrose carriers to accumulate sucrose quantities of more than 1 M in phloem cells, indicate that plants evolved transporters with unique functional properties. The transporter protein can achieve this task only because proton and sucrose transport are tightly coupled to each other. The knowledge about individual steps in the transport cycle of sucrose carriers is, however, still fragmentary. Within the scope of this work, the sucrose transporter ZmSUT1 from maize was expressed in the heterologous expression system of Xenopus oocytes. ZmSUT1 was found to mediate sucrose-induced proton currents in the µA range, predestinating this carrier for precise electrophysiological measurements of kinetic parameters in Xenopus oocytes. A basic electrophysiological characterization revealed that ZmSUT1 do not transport the synthetic sweetener sucralose but is competitively inhibited by this sucrose derivate. Having this tool in hands, individual steps of the ZmSUT1 transport cycle were dissected and quantified with sophisticated electrophysiological and fluorescence-based methods. Thereby transient currents in the absence of any substrate, which disappeared in the presence of saturating sucrose quantities, could be measured. These so-called presteady-state currents were composed of a fast and a slowly decaying current component and could be associated with the binding of protons to a binding site at the transporter within the electrical field of the membrane. Thus, the study of presteady-state currents allowed us to individually characterize the first step in the transport cycle of ZmSUT1 – the binding of protons to ZmSUT1. Interestingly, the slow current component disappeared in the presence of the competitive inhibitor sucralose. To understand this behavior and to elucidate conformational rearrangements within the carrier associated with the transport of sucrose, we visualized movements of ZmSUT1 using the voltage clamp fluorometry technique. Indeed, we for the first time were able to monitor conformational changes of a plant transport protein. Detailed analysis revealed that conformational changes of ZmSUT1 occur in the absence as well as in the presence of its substrate. However, upon application of the inhibitor sucralose the movements of the ZmSUT1 proteins were markedly reduced. This fact, taken together with the disappearance of the slow presteady-state component, let us conclude that sucralose seem to lock ZmSUT1 in its outward-facing conformation. The rate-limiting step of the reaction cycle is determined by the accessibility of the extracellular proton binding site and thus by conformational changes of the ZmSUT1 protein. Taken together our studies resolved the first step in the reaction cycle of a plant sucrose transporter - the binding of protons to the carrier - and its interrelationship with the alternating movement of the protein. Based on these results a mechanistic transport model of plant sucrose transporters was drawn and discussed. KW - Mais KW - Saccharose KW - Symport KW - ZmSUT1 KW - Transport KW - Saccharose KW - Spannungsklemmen-Fluorometrie KW - VCF KW - presteady-state Ströme KW - sucrose KW - transport KW - voltage clamp fluorometry KW - presteady-state Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78949 ER - TY - THES A1 - Schulz, Alexander T1 - Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana T1 - Molecular mechanism of the proton-coupled sugar transport in mesophyll vacuoles of Arabidopsis thaliana N2 - Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport über die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierfür wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkräfte des vakuolären Zuckertransportes ermöglichten. Zusätzlich wurden Lokalisations- und Interaktionsstudien zu ausgewählten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgeführt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuoläre glucose- und saccharose-induzierte Protonen-Transportkapazitäten in Mesophyllvakuolen von Wildtyp-pflanzen aufgelöst werden, die eindeutig einen Antiportmechanismus für beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinität und hohe Transportkapazität für den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkräfte der Zuckertransportaktivität herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abhängigen H+-Pumpaktivität auf die pH-Homöostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant für die Zuckertransporter zu fungieren. Darüber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole näher charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich für den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter Überexpression in Zuckertransporter-Verlustmutanten eindeutig aufgelöst und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bezüglich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden. N2 - This work provides new insights into the sugar transport across the vacuolar membrane of Arabidopsis thaliana and its energization by the V-ATPase. For this, patch-clamp experiments were specifically designed enabling low-resolution current recordings for the direct detection and characterization of the transport mechanisms, transport properties and driving forces of the vacuolar sugar transport. In addition, localization and interaction studies on selected transporters have been performed by using the confocal laser scanning microscopy. In particular, following aspects of plant sugar transport and its energization were studied. In patch-clamp experiments on mesophyll vacuoles of wild type plants, prominent glucose- and sucrose-induced proton transport capacities were resolved, which could be clearly related to an antiport mechanism used for loading the vacuole with both sugars. Thereby, the vacuolar glucose and sucrose antiporter showed a low-affinity and a high transport-capacity for the respective sugar. On the molecular level, the proton-coupled uptake of both sugars, glucose and sucrose, into the vacuole could be mainly associated with the putative monosaccharide transporter AtTMT1/2, which was consequently identified as the first glucose-sucrose/proton-antiporter. In the course of these studies, the sugar- and the pH-gradient were revealed as driving forces of the sugar transport activity. In this context, a contribution was made to a quantitative characterization of the V-ATPase that proved the influence of the V-ATPase on the pH homeostasis based on the pH dependency of the H+-pump activity. Hence, the V-ATPase seems to function as a pH-regulated energy source for the sugar transporters. Moreover, a specific physical interaction between AtTMT1 and the mitogen-activated protein kinase AtVIK1 was detected via bimolecular fluorescence complementation assays identifiying AtVIK1 as a potential regulatory factor of AtTMT1. Beside the AtTMT1/2-mediated glucose and sucrose uptake into the vacuole, the sugar release from the vacuole was also characterized. By means of comparative patch-clamp studies on mutants lacking different sugar transporters, AtERDl6 was identified as glucose/proton symporter and appears to be responsible for glucose export from the vacuole. Concerning the export of sucrose out of the vacuole, for the first time direct evidence for the sucrose/proton symport function of AtSUC4 in planta was provided after its transient overexpression in certain sugar-transporter knockout lines. Furthermore, the studies on wild type and sugar-transporter knockout lines regarding vacuolar glucose/sucrose loading and unloading also revealed that in addition to AtTMT1/2 and AtERDl6 further proton-coupled sugar transporters - of yet unknown molecular identity - must be present in mesophyll cells. KW - Ackerschmalwand KW - Vakuole KW - Saccharose KW - Glucose KW - Mesophyll KW - Protonenpumpe KW - AtTMT1/2 KW - AtSUC4 KW - AtERDl6 KW - V-ATPase KW - Mesophyllvakuole KW - Glucose/Saccharose Transport KW - Antiport KW - Symport KW - AtTMT1/2 KW - AtSUC4 KW - AtERDl6 KW - V-ATPase KW - mesophyll vacuole KW - glucose/sucrose transport KW - antiport KW - symport KW - Glucosetransport Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85596 ER -