TY - THES A1 - Melms, Hannah T1 - Charakterisierung und Analyse mesenchymaler Stammzellen dentalen Ursprungs mit Fokus auf die dentalen Aspekte der Hypophosphatasie - Etablierung eines in vitro Modells - T1 - Characterization and analysis of mesenchymal stem cells of dental origin with focus on the dental aspects of hypophosphatasia - Establishment of an in vitro model - N2 - Im seltenen Krankheitsbild der Hypophosphatasie (HPP) treten aufgrund der Fehlfunktion der Gewebe-unspezifischen Alkalischen Phosphatase (tissue-nonspecific alkaline phosphatase, TNAP) skelettale und dentale Symptome in sehr variabler Ausprägung auf. Der vorzeitige Verlust von Milchzähnen ist das zahnmedizinische Leitsymptom und in vielen Fällen ein erstes Anzeichen dieser Erkrankung. In dieser Arbeit wurde ein in vitro Modell der HPP etabliert und der Fokus auf die dentalen Aspekte dieser Erkrankung gelegt. Hierzu wurden mesenchymale Stammzellen (MSCs) aus Bereichen analysiert, die bei einer Erkrankung von dieser Mineralisierungsstörung betroffen sind. Es wurden dentale Stammzellen aus der Pulpa (dental pulp stem cells, DPSCs) und dem parodontalen Ligament (periodontal ligament stem cells, PDLSCs) isoliert und im Vergleich zu Stammzellen aus dem Knochenmark (bone marrow mesenchymal stem cells, BMSCs) charakterisiert. Um den Einfluss der Spendervariabilität zu reduzieren, wurden aus dem gesamten dentalen Probenmaterial nur vollständige Probenpaare aus DPSCs und PDLSCs von 5 Spendern für die vergleichenden Analysen verwendet. Die dentalen MSCs konnten somit paarweise direkt miteinander verglichen werden. DPSCs gelten seit ihrer Entdeckung von Gronthos et al. im Jahr 2000 als geeignete Quelle für die Stammzellgewinnung mit vielversprechenden Anwendungsmöglichkeiten im Bereich des Tissue Engineering und der regenerativen muskuloskelettalen Medizin. PDLSCs sind aufgrund der parodontalen Problematik der HPP von besonderem Interesse in dieser Arbeit. Die Isolation von Stammzellen aus Pulpa und PDL konnte mit dem Nachweis der sogenannten Minimalkriterien für MSCs bestätigt werden. In diesem durch Enzyminhibition mit Levamisol induzierten in vitro Modell der HPP wurde die TNAP-abhängige Genexpression, die Enzym-Aktivität und das osteogene Differenzierungspotenzial an diesen drei Mineralisierungs-assoziierten MSCs untersucht. Die erweiterte Genexpressionsanalyse in Kooperation mit der Core Unit Systemmedizin der Universität Würzburg mit einer RNA-Sequenzierung der PDLSCs ergab interessante Einblicke in die differentielle Genexpression nach der TNAP-Inhibition während der osteogenen Differenzierung und Ansatzpunkte für weitere Analysen. Die beobachteten Genregulationen waren nach dem derzeitigen Verständnis pathologischer Zusammenhänge nachvollziehbar und simulierten in vitro HPP-relevante Signalwege repräsentativ. Insbesondere die signifikante Genregulation von P2X7 und DMP1, sowie Zusammenhänge aus dem Wnt-Signalweg zeigen hinsichtlich der dentalen Aspekte der HPP neue Ansatzpunkte auf. Die erhöhte P2X7-Expression in diesem in vitro HPP-Modell scheint mit der Parodontitis-Problematik der HPP zu korrelieren und verdeutlicht unter anderem die multifaktorielle Ätiologie und Pathogenese der Parodontitis. Die Tatsache, dass die experimentellen Beobachtungen in Einklang mit dem klinischen Bild der HPP gebracht werden können, bestätigt die Relevanz des hier etablierten in vitro Modells. Zusammenfassend konnten anhand dieses in vitro Modells der HPP neue Aspekte aufgedeckt werden, die nicht nur im Hinblick auf die dentale Problematik der HPP aufschlussreich sind. N2 - In the rare clinical picture of hypophosphatasia (HPP) skeletal and dental symptoms occur in very variable severity due to a dysfunction of the enzyme tissue-nonspecific alkaline phosphatase (TNAP). The premature loss of deciduous teeth is the main dental symptom and in many cases the first sign of this disease. In this thesis, an in vitro model for HPP was established and the research focus was put on the dental aspects of this disease. Mesenchymal stem cells (MSCs) from areas affected by this mineralization disorder were analyzed. Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) were isolated and characterized in comparison to bone marrow mesenchymal stem cells (BMSCs). In order to reduce the influence of donor variability, only complete pairs of DPSCs and PDLSCs from five donors were used for comparative analysis. The mesenchymal stem cell character of the isolated cells from the dental pulp and the PDL was confirmed by the verification of the so-called minimal criteria for MSCs. In this in vitro model for HPP, which was induced by inhibition of TNAP enzyme with levamisole, the TNAP-dependent gene expression, the enzyme activity and the osteogenic differentiation potential of these three mineralization-associated MSCs were investigated. Additionally, an extended gene expression analysis was performed in cooperation with the Core Unit System Medicine of the University of Würzburg using the RNA sequencing technique. Analysis of RNAs isolated from PDLSCs provided interesting insights into the differential gene expression due to TNAP inhibition during osteogenic differentiation and consequently starting points for further analyses. The observed gene regulation was in line with the current understanding of pathological relationships and simulated HPP-relevant signaling pathways in vitro. In particular, the significant gene regulation of P2X7 and DMP1, as well as correlations from the Wnt signaling pathway, reveal new considerable approaches for the dental aspects of HPP. The increased P2X7 expression in this in vitro HPP model seems to correlate with the periodontal disease of HPP and illustrates, among other things, the multifactorial etiology and pathogenesis of periodontitis. The fact that the experimental observations can be reconciled with the clinical picture of HPP confirms the relevance of the in vitro model established here. In summary, this in vitro model for HPP has revealed a number of new interesting aspects - not only with regard to the dental problems of HPP. KW - Hypophosphatasie KW - Stammzellen KW - Hypophosphatasia KW - Mesenchymale Stammzellen KW - mesenchymal stem cells KW - dentale Stammzellen KW - dental stem cells KW - osteogene Differenzierung KW - osteogenic differentiation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189844 ER - TY - THES A1 - Schmalzl, Jonas Georg T1 - Genetische Modifikation humaner mesenchymaler Stammzellen zur Stimulation der Knochenheilung T1 - Synergistic effect of Indian hedgehog and BMP-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells N2 - Fragestellung: Die Therapie von Knochendefekten kritischer Größe mit kompromittiertem Regenerationspotential, stellt ein schwerwiegendes Problem dar. Die Forschung auf dem Gebiet der Knochenheilung hat sich in jüngster Vergangenheit daher auf die Anwendung mesenchymaler Vorläuferzellen (MSZ) zur Stimulierung des Knochenwachstums konzentriert. In der vorliegenden Studie wurde in humanen MSZ eine Überexpression spezifischer Wachstumsfaktoren induziert mit dem Ziel, deren osteogenes Potential zu steigern. Methodik: MSZ wurden nach etablierten Protokollen expandiert. Durch adenovirale Transfektion wurde eine überexpression von grün fluoreszierendem Protein (GFP, Kontrolle), indian hedgehog (IHH), bone morphogenetic protein 2 (BMP-2) und IHH in Kombination mit BMP-2 induziert. Die MSZ wurden für 28 Tage mit osteogenem Differenzierungs- und Kontrollmedium kultiviert. Als weitere Kontrolle dienten native MSZ. Es wurden die Auswirkungen der jeweiligen genetischen Veränderungen auf die metabolische Aktivität (Alamar Blau), die Proliferation (Qubit dsDNA BR), die Aktivität des Enzyms alkalische Phosphatase (ALP)(p-Nitrophenylphosphat), die Mineralisierung (Alizarinrot S, Calcium O-Cresolphthalein) sowie auf die Expression charakteristischer Markergene untersucht (qRT-PCR). Ergebnis: In den ersten 72h nach Transfektion konnte eine leichte, im Vergleich zu nativen Zellen nicht signifikante Abnahme der metabolischen Aktivität in allen Gruppen beobachtet werden. Das Proliferationsverhalten transfizierter und nativer MSZ unterschied sich während des Untersuchungszeitraums nicht signifikant. Bei der Analyse der ALP-Aktivität zeigte sich ein typisches Rise-and-Fall Muster. Alle ost Gruppen wiesen sowohl im Assay als auch in der PCR eine signifikant höhere ALP-Aktivität auf. Die Überexpression von BMP-2 und IHH+BMP-2 bewirkte eine signifikant stärkere Mineralisierung an Tag 28. In der PCR zeigte sich für BMP-2 ost und IHH+BMP2 ost ein signifikanter Anstieg der Osteopontin und BMP-2 Expression über die Zeit. Zudem stieg bei allen ost Gruppen die Runx2 Expression bis Tag 21 an. Schlussfolgerung: Die virale Transfektion hatte keinen negativen Einfluss auf die metabolische Aktivität der Zellen oder deren Proliferationsverhalten. Die Überexpression von BMP-2 ohne oder in Kombination mit IHH führte zu einer vermehrten Produktion extrazellulärer Matrix und zu einer gesteigerten Genexpression osteogener Marker. Die virale Transfektion stellt daher eine vielversprechende Möglichkeit dar, das osteogene Potential von MSZ zu steigern. N2 - Introduction: To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). Methods: In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and non-transduced MSCc served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase activity (ALP), mineralization in cell culture, and osteogenic marker gene expression was investigated. Results: Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH+BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained qRT-PCR analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenicly induced BMP-2 and IHH+BMP-2 transduced cells when compared to the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH+BMP-2 transduced cells cultured in osteogenic media. Conclusion: In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects. KW - Stammzellen KW - Osteogenese KW - Adenoviren KW - Wachstumsfaktoren KW - Knochenheilung KW - mesenchymale Stammzellen KW - bone morphogenic protein 2 KW - indian hedgehoc KW - gene transfer KW - osteogenic potential KW - mesenchymal stem cells KW - osteogenes Potential KW - growth factors KW - adenovirale Transduktion KW - Gen Transfer Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142391 ER - TY - THES A1 - Klotz, Barbara T1 - Die Rolle der Modulatoren 1,25‐Dihydroxyvitamin D3, Aktivin A, Myostatin und der Sauerstoffspannung bei der Schlüsselentscheidung zwischen Stemness und Morphogenese T1 - The role of the modulators 1,25‐dihydroxyvitamin D3, aktivin A, myostatin and oxygen tension for the decision between stemness and morphogenesis N2 - Aus dem Knochenmark isolierte humane mesenchymale Stammzellen (hMSC) sind als Vorläuferzellen der Osteoblasten an der Knochenformation sowie an der Knochenremodellierung beteiligt und aufgrund ihrer Multipotenz in der Lage, in mesenchymales Gewebe (Knochen, Knorpel, Fett) zu differenzieren. Aufgrund dieser Eigenschaften gelten sie als Quelle der Regeneration und der Heilung im Hinblick auf zellbasierte Therapien zur Behandlung degenerativer Erkrankungen (Arthrose, Osteoporose) des muskuloskelettalen Systems. Die besondere Situation der Geweberegeneration beim älteren Menschen ist gekennzeichnet durch den Anstieg der Produktion von Hemmstoffen der Geweberegeneration und durch verschiedene häufige Mangelzustände wie z.B. den Vitamin D-Mangel. In der vorliegenden Arbeit wurden Modulatoren (Morphogene) untersucht, die in der Lage sind, die hMSC in vitro in ihrem proliferativen, undifferenzierten Zustand (transient amplifying pool) und am Übergang in die Differenzierung und Reifung zu beeinflussen. Ziel war es, durch die Charakterisierung solcher Modulatoren, Verfahren zu etablieren, die zu einer verbesserten Zellqualität bei regenerativen Therapiestrategien führen, sei es in situ oder beim Tissue Engineering. Der Fokus lag auf der Geweberegeneration beim älteren Menschen. Dafür wurden als Morphogene 1,25-Dihydroxyvitamin D3 (1,25D3), Aktivin A (AA), Myostatin (MSTN) und Low Oxygen (LO) ausgewählt und hinsichtlich ihrer Wirksamkeit auf Stemness, Differenzierung und Seneszenzentwicklung in der Zellkultur getestet. Alle 4 Kandidaten nehmen im menschlichen Organismus wichtige regulatorische Aufgaben ein. 1,25D3 wirkt nicht nur lokal auf Zellen und Gewebe, sondern mit der Mineralisierung des Knochens und der Regulierung des Kalzium- und Phosphatspiegels im Serum auch systemisch. AA und MSTN werden als Mitglieder der TGFβ-Familie mit dem muskuloskelettalen System in Verbindung gebracht, da eine Inaktivierung von MSTN bei Mensch und Tier zu einem deutlichen Anstieg der Skelettmuskelmasse führt. Gleichzeitig fördert ein Aktivin Antagonist, der neue Wirkstoff Sotatercept (ACE-011), die Knochenbildung im Menschen. Mit der Kultivierung der hMSC unter reduzierter Sauerstoffspannung (2,5 % Sauerstoff, LO) sollten Bedingungen in der Zellkultur geschaffen werden, die - im Vergleich zur traditionellen Kultivierung mit einem atmosphärischen Sauerstoffgehalt von 21 % - näher an den physiologischen Gegebenheiten bei der Geweberegeneration sind. Zu Beginn wurde sichergestellt, dass alle 4 Modulatoren die Expression typischer mesenchymaler Oberflächenmarker nicht beeinflussten und die klonogene Kapazität der stimulierten hMSC erhielten. Im Rahmen weiterer Untersuchungen zeigte sich, dass eine permanente 1,25D3 Supplementierung die chondrogene, adipogene und osteogene Differenzierungskapazität der hMSC erhielt und somit den Stammzellcharakter der hMSC nicht beeinträchtigte. Die verstärkte Expression der Quieszenz-assoziierten Gene in 1,25D3 stimulierten hMSC deutete darauf hin, dass sich die hMSC aufgrund der 1,25D3 Supplementation in Richtung Quieszenz verändern. Die permanente 1,25D3 Supplementation übt somit eine vor Alterungsprozessen schützende Wirkung in der Zellkultur aus, indem die Entwicklung replikativer Seneszenz verzögert wird und das multipotente Potential der hMSC erhalten wird. Im Bezug auf die Differenzierungsfähigkeit der Zellen verhielten sich rh AA und rh MSTN konträr. Während eine rh MSTN Stimulation keine Wirkung auf die adipogene und osteogene Differenzierung hatte, schränkte rh AA das adipogene und osteogene Differenzierungspotential der hMSC nahezu vollständig ein und die Zellen wurden in einem Zustand des Prä-Kommittments festgehalten. Da die LO Expandierung die Stemness erhöhte bzw. die Seneszenz reduzierte und die hMSC in einem proliferativen Zustand bei gleichzeitiger Hemmung der Differenzierung arretierte, scheint diese Art der Kultivierung ein besonderer Schutz für die hMSC zu sein. Mit der vorliegenden Arbeit ist es gelungen, wirksame Morphogene (1,25D3, rh AA, LO) zu finden, die in der Lage sind, modulatorisch auf die hMSC einzuwirken ohne dabei den Stammzellcharakter zu verändern. Durch ihre Modulation kann nicht nur die Qualität der hMSC verbessert werden, sondern je nach Bedarf können auch die verschiedenen Phasen der Geweberegeneration insbesondere beim Übergang vom „transient amplifying pool“ zur Differenzierung gesteuert werden. Diese Ergebnisse können Konsequenzen für die Anwendung haben, bei der in situ Geweberegeneration ebenso wie für das ex vivo Tissue Engineering. N2 - Human mesenchymal stem cells isolated from bone marrow are skeletal precursors which are actively involved in bone formation and remodeling. Being multipotent cells they can give rise to mesenchymal tissues such as bone, cartilage and adipose tissue. These attitudes qualify them as a source of regeneration and healing with regard to treatment of degenerative diseases of the musculoskeletal system, e.g. osteoarthritis and osteoporosis. During aging the healing capacity generally decreases due to the enhanced production of inhibitors of tissue regeneration and also various deficiencies such as hypovitaminosis D. In this thesis morphogenic modulators were characterized which are capable of influencing hMSC in their proliferative and undifferentiated phase (transient amplifying pool) and at the transition border of lineage commitment and maturation. The aim was to establish strategies which by modulating these factors enhance cell quality in regenerative therapeutic applications both in situ and in tissue engineering. The main focus was tissue regeneration in the elderly. The morphogens 1,25‐Dihydroxyvitamin D3 (1,25D3), Activin A (AA), Myostatin (MSTN) and Low Oxygen (LO) were characterized with respect to their effects on stemness, differentiation and senescence development in cell culture. All four candidates have important regulatory tasks in the human organism. 1,25D3 has both local effects on cells and tissues and systemic effects on the regulation of bone mineralization and systemic calcium and phosphate levels. AA and MSTN, both members of the TGF-family of proteins, are linked to the musculoskeletal system since inactivation of MSTN in humans and animals causes enhanced muscle mass, while activin antagonists like Sotatercept (ACE-011) enhance both bone and muscle mass in animals and humans respectively. By cultivating cells in cell culture at low oxygen tension (2.5%, LO) the culture conditions were kept in a more physiological range for tissue regeneration when compared to a conventional culture at 21% oxygen. Typical mesenchymal surface markers and the clonogenic capacity were initially analyzed to exclude an influence of these morphogenic factors on the multipotent mesenchymal hMSC phenotype. Permanent culture under the influence of 1,25D3 did not impair the stemness character of hMSC, maintained their chondrogenic, adipogenic and osteogenic differentiation capacity. A trend towards enhanced expression of markers for quiescence during this treatment indicated a permissive effect towards quiescence development. In essence permanent culture in 1,25D3 exerts a defense against aging processes by delaying senescence development while maintaining the multipotent state. Rh AA and rh MSTN were oppositional with respect to the differentiation capacity of hMSC. While rh MSTN was without influence on adipogenic and osteogenic differentiation in vitro, rh AA robustly inhibited the osteogenic and adipogenic differentiation potential, hence arrested cells in a state of pre-commitment. LO cell culture seemed to represent a special protection for hMSC since it enhanced stemness, reduced senescence development, arrested cells in a highly proliferative pre-commitment state and inhibited differentiation. Overall in this work morphogens were characterized as active modulators of hMSC (1,25D3, rh AA, LO) which at the same time maintain their stem cell character. This study has succeeded in finding effective morphogens (1,25D3, rh AA, LO) which are able to act as modulators on hMSC without changing their stem cell character. Using this modulation not only stem cell quality and expansion capacity may be enhanced but also various phases of tissue regeneration may be actively operated, especially the switch from the transient amplifying pool to differentiation and maturation. This may have consequences for in situ and ex vivo tissue regeneration end engineering. KW - Adulte Stammzelle KW - Altern KW - Mesenchymale Stammzellen KW - Stemness KW - Differenzierung KW - muskuloskelettales System KW - mesenchymal stem cells KW - stemness KW - differentiation KW - musculoskeletal system Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73793 ER - TY - THES A1 - Weißenberger, Manuel Claudius T1 - Chondrogene Differenzierung von humanen mesenchymalen Stammzellen zur Knorpelregeneration mittels adenoviralem Indian Hedgehog-Gentransfer T1 - Mesenchymal stem cell-based cartilage regeneration - Indian hedgehog gene transfer as chondrogenic inductor in an in vitro model N2 - Ziel dieser Arbeit war es zu untersuchen, ob mittels IHH-Gentransfer aus Hüftköpfen gewonnene hMSCs chondrogen im Pelletkultursystem differenziert werden können und ob zugleich durch IHH eine Modulation der hypertrophen Enddifferenzierung der hMSCs in diesem System möglich ist. IHH bestimmt in der Wachstumsfuge zusammen mit PTHrP während der endochondralen Ossifikation die Chondrozytenreifung und -differenzierung entscheidend mit und ist daher ein interessanter Kandidat zur Induktion von hyalinem oder zumindest hyalin-ähnlichem Knorpelgewebe in der stammzellbasierten Gentherapie. Nach Gewinnung und Kultivierung der hMSCs wurden diese mit Ad.GFP, Ad.IHH, Ad.IHH+TGF-β1, Ad.IHH+SOX-9 oder Ad.IHH+BMP-2 transduziert bzw. ein Teil für die Negativkontrolle nicht transduziert und im Anschluss alle Gruppen zu Pellets weiterverarbeitet. Histologische, biochemische sowie molekularbiologische Untersuchungen wurden an verschiedenen Zeitpunkten zur Evaluierung des chondrogenen Differenzierungsgrades sowie der hypertrophiespezifischen Merkmale der kultivierten Pellets durchgeführt. Es konnte durch diese Arbeit sowohl auf Proteinebene als auch auf Genexpressionsebene reproduzierbar gezeigt werden, dass primäre hMSCs im Pelletkultursystem sowohl durch den adenoviralen Gentransfer von IHH allein als auch durch die Co-Transduktionsgruppen IHH+TGF-β1, IHH+SOX-9 und IHH+BMP-2 chondrogen differenziert werden können. Dabei zeigten alle IHH-modifizierten Pellets Col II- und CS-4-positive immunhistochemische Anfärbungen, eine gesteigerte Synthese von Glykosaminoglykanen im biochemischen GAG-Assay sowie eine Hochregulation von mit der Chondrogenese assoziierten Genen. Das Auftreten hypertropher Merkmale bei den chondrogen differenzierten MSCs konnte durch IHH-Gentransfer nach 3 Wochen in vitro-Kultivierung nicht vollkommen unterdrückt werden, war jedoch besonders stark ausgeprägt, wenn BMP-2 co-exprimiert wurde und war etwas weniger evident in der IHH+SOX-9-Gruppe. Dabei zeigte die Ad.IHH+BMP-2-Gruppe sowohl in der ALP-Färbung als auch in dem ALP-Assay und der quantitativen RT-PCR die stärkste Hochregulierung des hypertrophen Markers ALP. Möglicherweise brachte die Überexpression von IHH das fein aufeinander abgestimmte Regulationssystem zwischen IHH und PTHrP aus dem Gleichgewicht und könnte als ein Grund dafür angeführt werden, warum die Hypertrophie im Pelletkultursystem nicht vollkommen supprimiert werden konnte. Es bleibt abzuwarten, ob IHH in vivo die Chondrogenese induzieren und dabei zugleich das Phänomen der chondrogenen Hypertrophie regulieren kann. In der Zukunft würde dies letztlich der stammzellbasierten Knorpelregeneration in vivo zu Gute kommen. N2 - Introduction: The issue of final end-stage chondrogenic hypertrophy has been identified in previous studies on MSC-mediated chondrogenesis using several bone morphogenetic proteins (BMPs) following adenoviral gene transfer as one hurdle in the efforts of creating stable cartilage repair tissue. Therefore, in this in vitro study we explore, whether the growth factor Indian hedgehog (IHH), alone or in combination with TGFb1, BMP-2 or SOX-9, is able to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro, and if IHH induces chondrogenesis in human primary mesenchymal stem cells (MSCs) via its gene-delivery. Methods: First generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with Ad.TGFb1, Ad.BMP-2 and Ad.SOX-9 to transduce human bone-marrow derived MSCs at 5 x 102 infectious particles/cell (50 MOI multiplicities of infection). Thereafter 3 x 105 cells were seeded into aggregates and cultured for three weeks in serum-free chondrogenic differentiation medium (ITS, Dexa, Asc) with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analyzed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy after 10 days and 21 days of culture. Results: IHH alone or in combination with TGFb1, BMP-2 or SOX-9 were equipotent inducers of chondrogenesis in MSCs in pellet culture (strong staining for alcian blue and collagen type II, high levels of GAG synthesis, expression of mRNAs associated with chondrogenesis, controls were not chondrogenic). IHH-modified aggregates, alone as well as the Ihh co-transduced groups with TGFb1, BMP-2 or SOX-9, showed also a tendency to progress towards hypertrophy, as judged by expression of alkaline phosphatase and immunhistochemical staining for collagen type X, while the highest levels for both markers seen in the IHH+BMP-2-group after 21 days of culture. These results were confirmed by qRT-PCR analyses that showed comparable expression of cartilage specific marker genes (Col II, SOX-9) in the induced pellet cultures and a higher expression of hypertrophy associated marker genes (ALP, Col X) in the IHH+BMP2-group. Discussion: IHH gene transfer with adenoviral vectors alone or in combination with TGFb1, BMP-2 or SOX-9 efficiently induces chondrogenesis in MSCs, however, the appearance of hypertrophy could not be completely obviated, and was strongly present when BMP-2 was co-expressed. Thus, it remains to be seen in the ongoing in vivo studies, whether IHH can induce chondrogenesis while modulating chondrogenic hypertrophy in vivo. KW - Stammzelle KW - Gentherapie KW - Wachstumsfaktor KW - Knorpel KW - Knorpelregeneration KW - Mesenchymale Stammzellen KW - Gentherapie KW - Indian Hedgehog KW - Cartilage regeneration KW - mesenchymal stem cells KW - gene therapy KW - Indian hedgehog Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78014 ER - TY - THES A1 - Brousos, Nikos Alexander T1 - Mesenchymale Stammzellen: Analyse der Auswirkungen des Einsatzes von humanem Serum in der Langzeitkultur sowie des Entwicklungspotentials im Blastozystenmodell T1 - Mesenchymal stem cells: The effect of human serum in long term culture and the developmental potential in the blastocyst model N2 - Mesenchymale Stammzellen (MSCs) sind multipotente adulte Stammzellen. Sie können aus einer Vielzahl verschiedener Gewebe isoliert werden, z.B. aus Knochenmark (BM), Fettgewebe (AT) und Nabelschnurblut (CB). Besondere Bedeutung haben MSCs als mögliche Zellquelle für neuartige klinische Stammzelltherapien, da sie relativ einfach aus adulten Patienten isoliert und in vitro expandiert werden können. Grundlage für die erforschten Therapieansätze ist häufig das Entwicklungspotential der MSCs. Es umfasst mesenchymale Zelltypen wie Adipozyten, Chondrozyten und Osteoblasten, aber auch nicht-mesenchymale Zelltypen wie z.B. Hepatozyten oder Nervenzellen. Das Entwick-lungspotential von MSCs zu nicht-mesenchymalen Zelltypen ist jedoch umstritten und viele Differenzierungswege sind bisher nur in vitro gezeigt. Außerdem ist unklar, ob MSCs aus verschiedenen Ursprungsgeweben dasselbe Entwicklungspotential besitzen. Ein Ziel dieser Arbeit war deshalb das in vivo Differenzierungspotential von CB-, AT- und BM-MSCs vergleichend zu untersuchen. Dazu wurden die MSCs in murine Tag-3-Blastozysten injiziert. Diese wurden dann in Foster-Mäuse transferiert und die daraus entstandenen Embryonen am Tag 16 der Embryonalentwicklung (E16.5) analysiert. Dazu wurde gDNA aus verschiedenen embryonalen Geweben isoliert und mittels humanspezifischer quantitativer real-time PCR (qPCR) die Verteilung sowie das Ausmaß der humanen Donorkontribution bestimmt. Außerdem sollte der Differenzierungsstatus der humanen Zellen mittels in situ Hybridisierung und Antikörperfärbung analysiert werden... N2 - Mesenchymal stem cells (MSCs) are multipotent adult stem cells. They can be isolated from a multitude of tissues including bone marrow (BM), adipose tissue (AT) and cord blood (CB). MSCs gained special importance as potential cell source for novel stem cell-based therapies, because their isolation is relatively easy from patients and they can be expanded in vitro. Current attempts to use MSCs as therapeutic are based on their developmental potential, which includes mesenchymal cell types, for example adipocytes, chondrocytes and osteoblasts as well as the non-mesenchymal cell types like hepatocytes and neural cell types. The developmental potential of MSCs towards non-mesenchymal cell types is controversial and so far often only showed in vitro. Further, it is not clear whether MSCs from different tissue origins have the same developmental potential. Hence the aim of this thesis was to evaluate and compare the in vivo differentiation potential of human MSCs from CB, BM and AT. Therefore MSCs were injected in murine embryonic day 3.5 blastocysts. Then the blastocysts were transferred into foster mice and the developing E 16.5 embryos were analyzed. For this analysis gDNA from a variety of embryonic tissues was isolated. Distribution and degree of human donor contribution was determined by quantification of the human gDNA sequences in the samples with human specific quantitative real-time polymerase chain reaction (qPCR). In addition it was planned to analyze the differentiation status of the human cells by immunhistochemistry and in situ hybridization ... KW - Stammzelle KW - Mesenchym KW - Zelldifferenzierung KW - mesenchymale Stammzellen KW - MSC KW - Blastozysteninjektion KW - Seneszenz KW - humanes Serum KW - Entwicklungspotential KW - mesenchymal stem cells KW - blastocyst injection KW - senescence KW - human serum KW - developmental potential Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70401 ER - TY - THES A1 - Benisch, Peggy T1 - Molekulare Analysen zur Knochenregeneration im Alter und bei Osteoporose T1 - Molecular analysis of bone regeneration in aging and osteoporosis N2 - Mesenchymale Stammzellen (MSC) stellen die Grundlage der Knochenformation dar, indem sie als multipotente Zellen in viele, für die Knochenhomöostase benötigte Zelltypen differenzieren können, wie z.B. Osteoblasten. Während der Alterung des Menschen kommt es zu einem Ungleichgewicht zwischen Knochenaufbau und Knochenabbau, resultierend in einer verringerten Knochenmasse. Noch ist unklar, ob MSC an dem verminderten Knochenaufbau direkt beteiligt sind, indem sie z.B.im Laufe der Zeit Funktionsstörungen akkumulieren oder in die Seneszenz eintreten, und somit nicht mehr als Stammzellpool für die Osteoblastendifferenzierung zur Verfügung stehen. In der vorliegenden Arbeit wurde das Genexpressionsmuster gealterter Zellen mittels Mikroarray-Analysen untersucht, um die Alters-bedingten Veränderungen detektieren zu können. Hierfür wurde ein in-vitro-Alterungsmodell von humanen MSC (hMSC) etabliert, um die seneszenten Zellen mit hMSC früher Kultivierungspassagen zu vergleichen. Auch Zellen aus Spendern hohen Alters wurden untersucht, um einen Vergleich zwischen ex-vivo- und in-vitro-gealterten hMSC anstellen zu können. Da Osteoporose eine polygenetische Erkrankung des gealterten Knochens darstellt, wurden auch mit hMSC aus Osteoporose-Patienten Genexpressionsanalysen durchgeführt. Die Mikroarray-Analysen und anschließende systembiologische Auswertung zeigten, dass in-vitro-gealterte, seneszente hMSC starke Veränderungen im Transkriptom aufweisen, die auf Defizite in der Proliferation, Differenzierungskapazität und Migration schließen lassen. Neben bekannten Markern für replikative Seneszenz konnten in hMSC auch neue detektiert werden, wie z.B. HELLS, POU5F1 (OCT4) und FGFR2, deren Expression mit der Seneszenz abnimmt, oder CDH1 und PSG5, deren Expression zunimmt. Gene für Akute-Phase-SAA wurden stark erhöht exprimiert vorgefunden. Bei der funktionellen Charakterisierung konnte jedoch gezeigt werden, dass SAA1 und SAA1 durch Stress induziert werden, der der Seneszenz vorausgeht, und dass sie die Mineralisierung bei der osteogenen Differenzierung von hMSC fördern. Akute-Phase-SAA könnten somit eine Verbindung zwischen Alterung bzw. Inflammation und extra-skelettaler Verkalkung darstellen, die im Alter häufig auftritt, z.B. in Form von Arteriosklerose. In-vivo-gealterte hMSC wiesen ebenfalls Defizite im Expressionsmuster von Proliferations- und Migrations- relevanten Genen auf. Des Weiteren konnten nur wenige Gemeinsamkeiten zwischen in-vivo-gealterten hMSC und in-vitro-gealterten hMSC festgestellt werden. Dies lässt vermuten, dass die in-vivo-Alterung nicht zwangsläufig zu seneszenten Stammzellen führt, da Alterung eines Organismus ein multizellulärer Prozess ist, der durch viele Faktoren beeinflusst wird, wie z.B. Akkumulation von Mutationen und Krebsabwehr. Auch osteoporotische hMSC wiesen Veränderungen im Genexpressionsmuster auf, die mit den Daten zur in-vivo-Alterung verglichen wurden, um die rein Alters-assoziierten Änderungen herausfiltern zu können. Die übrig gebliebenen Gene repräsentierten Veränderungen allein aufgrund der Krankheit. Osteoporose bewirkte somit distinkte Genexpressions-änderungen in hMSC, die auf Förderung der Osteoklastogenese und Defizite in Proliferation, Migration und Differenzierungskapazität schließen lassen. Es konnten vielversprechende Kandidaten-gene für osteoporotische hMSC gefunden werden. Die prämature Expression des WNT-Inhibitors SOST (Sclerostin) und die Überexpression des BMP-Signalweg-Inhibitors MAB21L2 deuten auf eine Autoinhibition der Stammzellen hin, die letztlich die gestörte Knochenformation bei Alters-assoziierter Osteoporose begründen könnte. Zusammenfassend zeigt die vorliegende Arbeit, dass intrinsische Defizite von Stammzellen an der Pathophysiologie von Alterung und Osteoporose beteiligt sind. Sie eröffnet tiefgreifende Einblicke in die systembiologischen Veränderungen in Stammzellen aufgrund von Alterung oder Osteoporose, und setzt somit einen soliden Grundstein für weiterführende Analysen. N2 - Mesenchymal stem cells (MSC) represent the basis of bone formation, because as multipotent cells they can differentiate into many cell types important for bone homeostasis, e.g. osteoblasts. During aging an imbalance between bone formation and bone resorption occurs, which results in reduced bone mass. It is still unclear whether MSC biology is directly involved in reduced bone formation, e.g. by accumulating malfunctions in aged organisms or by entering replicative senscence. Thereby they would no longer function as a regenerative source for osteogenesis. In this study, the gene expression pattern of aged human MSC (hMSC) was analyzed by microarray hybridizations to determine aging-associated changes in those cells. Therefore, a model for in vitro aging was established and the gene expression pattern of senescent hMSC was compared with the pattern of hMSC in early passages. Moreover, cells isolated from patients of old age were analyzed to perform a comparison between ex-vivo and in vivo aging. Human MSC of patients diagnosed with osteoporosis were also examined because osteoporosis is a polygenetic disease of aged bone. Systems biology based interpretation of the microarray data revealed changes on the mRNA level in in vitro aged hMSC that indicate deficits in proliferation, differentiation capacity and migration. Additionally to known markers of replicative senescence in hMSC, new markers were detected, e.g. reduced expression of HELLS, POU5F1 (OCT4), and FGFR2, as well as higher expression of CDH1 and PSG5. Furthermore, genes for acute phase SAA proteins showed extremely high expression in senescent hMSC. Functional characterization of SAA1 and SAA2 revealed that the expression is rather a consequence of stress that precedes senescence than of replicative senescence itself. SAA also increases mineralization of osteogenic differentiated hMSC and could therefore be involved in age- or inflammation-associated extraskeletal calcification, e.g. arteriosclerosis. In vivo aged hMSC also showed deficiency in proliferation and migration on mRNA level. Furthermore on the gene expression level, in vivo aged and in vitro aged hMSC shared only few similarities. Those findings suggest that in vivo aging does not necessarily results in senescent stem cells, because the aging of an organism is a multicellular process, which is influenced by many other factors, e.g. accumulation of mutations and tumor defense. Osteoporotic hMSC also showed changes in their gene expression pattern. By comparing those data with the results of hMSC from age-matched patients, age-associated changes could be eliminated. All remaining genes with differential expression represented osteoporosis-related changes that indicated deficiencies in proliferation, migration and differentiation capacity. There were hints for enhancement of osteoclastogenesis by osteoporotic hMSC and promising candidates for osteoporosis with respect to inhibition of osteogenesis were detected. SOST (sclerostin) acts as an inhibitor for WNT signaling and MAB21L2 as an inhibitor for BMP signaling. Both genes were expressed to a higher extent in osteoporotic hMSC, which indicates autoinhibition of the stem cells and could lead to the reduced bone formation in osteoporosis. In summary, this study indicates that intrinsic alterations in stem cell biology are involved in the pathophysiology of aging and osteoporosis. It opens up profound insights into changes in systems biology of hMSC due to aging or osteoporosis which provide a broad basis for further analyses. KW - Osteoporose KW - Mesenchymzelle KW - Stammzelle KW - Altern KW - Mesenchymale KW - Knochen KW - Alterung KW - Microarray KW - mesenchymal stem cells Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64701 ER - TY - THES A1 - Meyer, Ulrike T1 - Bedeutung hypothetischer Gene bei der Transdifferenzierung humaner mesenchymaler Stammzellen T1 - Influence of hypothetic genes on transdifferentiation of human mesenchymal stem cells N2 - Untersuchung zur Bedeutung hypothetischer Genen bei der Transdifferenzierung humaner mesenchymaler Stammzellen N2 - Analysis of the influence of hypothetic genes on transdifferentiation of human mesenchyl stem cells KW - Zelldifferenzierung KW - mesenchymal stem cells Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48912 ER - TY - THES A1 - Stüber, Jens Christian T1 - In vitro Untersuchungen zur Rekonstruktion von Meniskusdefekten mit mesenchymalen Stammzellen eingebettet in Polylaktid-Kollagen I-Hydrogelkonstrukten T1 - In vitro examination to reconstruct a meniscus-defect with mesenchymal stem cells combined with a polylactid-collagen I-hydrogel construct. N2 - Der Meniskus gleicht die Inkongruenz der beiden Gelenkpartner im Kniegelenk aus und führt somit zu einer Reduktion der Knorpelbelastung. Aufgrund der eingeschränkten Selbstheilungsfähigkeit des bradytrophen Meniskusgewebes bleibt bei Verletzung oft nur die operative Teilresektion als Therapie der Wahl. In dieser in vitro Untersuchung erfolgte die Implantation eines mit mesenchymalen (MSZ) Stammzellen beladenem Polylaktid-Kollagen-I-Hydrogel. Die MSZ zeigten eine in der Histologie und PCR nachgewiesene chondrogene Differenzierungspotenz innerhalb des Polylaktidkonstruktes. Innerhalb des Stanzdefektes konnte eine Anhaftung der MSZ an das Meniskusgewebe sowie die Ausbildung einer stabilen Kollagen-I-Matrix gezeigt werden. Die Arbeit stellt die Grundlage für eine spätere tierexperimentelle Studie dar. N2 - The meniscus adjust the different shapes of the femor and Tibia and reduces the load of the articular cartilage. Because of his reduced regeneration rate, the meniscus often has to be partly removed in case of an injury. In this examination a polylactid-collagen I-hydrogel loaded with mesenchymal stem cells (msc) was implanted in the meniscus defect region. A chondral differentiation of the msc in the polylactid-construct was shown in the histology and a pcr-analysis was made. In the defect region the msc showed a near acclomeration to the meniscus tissue and a stable collagen-I-matrix was developed. The results are the base for a further examination in an animal model. KW - mesenchymale Stammzellen KW - Meniskus KW - in vitro KW - Polylaktid KW - Kollagen I-Hydrogel KW - mesenchymal stem cells KW - meniscus KW - polylactid KW - collagen I-hydrogel Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25074 ER - TY - THES A1 - Schupp, Kathrin T1 - In vitro Herstellung eines vorderen Kreuzbandkonstruktes aus mesenchymalen Stammzellen und einem Kollagen Typ I-Hydrogel T1 - Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel in vitro N2 - Verletzungen des vorderen Kreuzbandes gehören zu häufigsten Verletzungen des menschlichen Bandapparates. Da das vordere Kreuzband über ein schlechtes intrinsisches Heilungspotenzial verfügt, ist heutzutage die chirurgische Rekonstruktion mittels Sehnentransplantaten die Therapie der Wahl. Die vorliegende Arbeit beschäftigte sich mit der Fragestellung, ob es möglich ist, ein Kreuzband-Konstrukt aus mesenchymalen Stammzellen (MSCs) und einem Kollagen Typ I-Hydrogel herzustellen und wie die Einwirkung von mechanischem Stress die Struktur und Eigenschaften eines solchen Bandäquivalentes verändert. Dafür wurden MSCs und endständige Knochenblöcke in ein Kollagen Typ I-Hydrogel eingebracht. Das Konstrukt wurde zunächst eine Woche horizontal kultiviert, um den Zellen eine Umwandlung des Gels und eine Anheftung der Knochenblöcke zu ermöglichen. Anschließend wurde über 2 Wochen eine zyklische Dehnung in einem speziell dafür entworfenen Bioreaktur auf das Konstrukt ausgeübt. Histochemische ( HE, Masson-Goldner, Azan, Sirius-Red) und immunhistochemische (Kollagen I und III, Fibronektin, Vimentin und Elastin) Färbungen zeigten eine Induktion der Matrixproduktion mit wellenförmig in Achse des Zuges ausgerichteten Kollagenfasern, die Zellkerne stellten sich elongiert dar. RT-PCR-Analysen zeigten ebenso eine deutlich vermehrte Expression der oben genannten Fibroblastenmarker. Bei ungedehnten, horizontal kultivierten Kontrollkonstrukten waren keinerlei Veränderungen der Matrix zu erkennen. Das Konstrukt war jedoch nicht stabil genug, um für die klinische Anwendung zum Einsatz zu kommen. N2 - Disruptions of the anterior cruciate ligament (ACL) of the knee joint are common and are currently treated using ligament or tendon grafts. In this study we tested the hypothesis that it is possible to fabricate an ACL construct in vitro using mesenchymal stem cells (MSCs) in combination with an optimized collagen type I hydrogel. ACL constucts were molded using a collagen type I hydrogel containing 5x 105 MSCs/mL and bone cylinders at each end of the constructs. The constructs were kept in a horizontal position for one week to allow the cells and the gel to remodel and attach to the bone cylinders. Thereafter, cyclic stretching with 1 Hz was performed for two weeks in a specially designed bioreactor. Histochemical analysis for H&E, Masson-Goldner, Sirius-Red and Azan and immunhistochemical analysis for collagen types I and III, fibronectin, vimentin and elastin showed elongated fibroblast-like cells embedded in a wavy orientated collagenous tissue, together with a ligament-like extracellular matrix in the cyclic stretched constructs. No orientation of collagen fibers and cells and no formation of a ligament-like matrix could be seen in the non-stretched control group cultured in a horizontal position without tension for 3 weeks. RT-PCR analysis revealed an increased gene expression of collagen types I and III, fibronectin and elastin in the stretched constructs compared with the non-stretched controls. In conclusion, ACL-like constructs from a collagen type I hydrogen and MSCs have been fabricated. As shown by other investigators, who analysed the influence of cyclic stretching on the differentiation of MSCs, our results indicate a ligament-specific increased protein and gene expression and the formation of a ligament-like extracelluar matrix. But the fabricated constructs are still too weak for animal experiments or clinical application. KW - Tissue engineering KW - Kreuzband KW - mesenchymale Stammzellen KW - Tissue engineering KW - ACL KW - mesenchymal stem cells Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21620 ER - TY - THES A1 - Kuhnen, Sebastian T1 - Charakterisierung von sFRP4 als phosphatsensitives Phosphatonin in mesenchymalen Stammzellen T1 - Characterisation of sFRP4 as Phosphate-sensitive Phosphatonin in Mesenchymal Stem Cells N2 - Phosphat stellt einen essenziellen Bestandteil der Knochenhartsubstanz dar und ist zudem erforderlich, um mesenchymale Stammzellen osteogen zu differenzieren. Bei der Aufklärung molekularer Pathomechanismen von Störungen der Phosphathomöostase wurden in den vergangenen zehn Jahre mehrere Botenstoffe identifiziert, die spezifische Wirkungen auf den systemischen Phosphathaushalt haben. Die als „Phosphatonine“ bezeichneten Substanzen FGF23 (Fibroblastenwachstumsfaktor 23), sFRP4 (secreted frizzled related protein 4), FGF7 (Fibroblastenwachstumsfaktor 7) und MEPE (matrix extracellular phosphoglycoprotein) induzieren eine negative Phosphatbilanz, indem sie an der Niere phosphaturisch wirken. Ziel dieser Arbeit war es, eventuell vorhandene Interaktionen zwischen knochenbildenden Zellen, Phosphat und den inzwischen bekannten Substanzen mit Wirkung auf den Phosphathaushalt zu charakterisieren. Dazu wurden immortalisierte Zelllinien mesenchymaler Stammzellen (hMSC-TERT) und fetaler Osteoblasten (hFOB) konzentrations- und zeitabhängig mit Phosphat stimuliert (von 1,25 mM bis 20 mM, von 0 bis 48 h). Die quantitative real-time-PCR zur relativen mRNA-Quantifizierung wurde dabei in der Arbeitsgruppe als Methode etabliert, um den Einfluss dieser erhöhten Phosphatspiegel im Nährmedium auf die Expression von Genen des Phosphatstoffwechsels und Markern der osteogenen Differenzierung zu analysieren. Untersucht wurden Col1 (Kollagen 1), OC (Osteokalzin), AP (Alkalische Phosphatase) und OP (Osteopontin) als Differenzierungsmarker, Pit-1 (Natrium-Phosphattransporter), sFRP4, MEPE und FGF23 als Schlüsselsubstanzen im Phosphatstoffwechsel sowie Aktin und EF1a als Housekeeping-Gene. Die real-time-PCR wurde mit der SYBR® Green-Methode durchgeführt, die Effizienzbestimmung erfolgte mit LinRegPCR, die Auswertung mit REST© und REST 2005, jeweils für die ermittelte Effizienz und die als optimal angenommene Effizienz (E=2). Zunächst konnte die Expression des Natrium-Phosphattransporters Pit-1 in den Zellen hMSC-TERT und hFOB nachgewiesen werden. Bei beiden Zelllinien zeigte sich, dass die Expression von sFRP4 mit steigender Phosphatkonzentration bzw. steigender Stimulationsdauer nach unten reguliert wird. Beim Vergleich aller stimulierten Proben mit den unstimulierten Kontrollen fiel das Expressionsverhältnis bei hMSC-TERT ungefähr auf die Hälfte des Ausgangswertes (0,52; p<0,05), bei hFOB reduzierte es sich auf zwei Drittel (0,67; p<0,05). Es ist somit anzunehmen, dass Phosphat in der Lage ist, die Genexpression von sFRP4 in hMSC-TERT und hFOB nach unten zu regulieren. Für Pit-1 ergab sich bei hMSC-TERT der Hinweis auf eine gesteigerte mRNA-Expression unter Phosphateinwirkung, für hFOB-Zellen konnte diese Beobachtung nicht gemacht werden. Beide Zelllinien zeigten unter Phosphat-Stimulation und maximaler Einwirkzeit von 48 h kein einheitliches Expressionsmuster, das auf eine beginnende Differenzierung hinweisen würde. Der in dieser Arbeit gefundene Hinweis auf eine Phosphatsensitivität von sFRP4 in mesenchymalen Stammzellen und Osteoblasten lässt somit die Vermutung einer physiologischen Beteiligung von sFRP4 an der Phosphatregulation zu. Es bleibt zu klären, inwieweit andere Phosphatonine an solchen Signalachsen beteiligt sind. Spekuliert werden kann, dass sFRP4 auch als Antagonist des Wnt-Signalweges bei Differenzierungsvorgängen eine größere Rolle spielt als bisher angenommen. Des Weiteren sollte in der vorliegenden Arbeit ein Genexpressionssystem (Tet-On™ Konstrukt) in mesenchymalen adulten Stammzellen (hMSC-TERT) etabliert werden, mit dem im Endzustand die Expression beliebiger Gene Tetracyclin-abhängig induziert werden kann. Diese Arbeiten konnten bis zur ersten Transfektion erfolgreich durchgeführt werden: Für einen Referenz-Vektor zeigte sich eine ausgeprägte Induzierbarkeit durch Doxycyclin. Als erstes Gen sollte sFRP4 überexprimiert werden, das dafür zunächst isoliert, sequenziert und kloniert wurde und nun für den Einsatz in diesem Genexpressionssystem zur Verfügung steht. Die Aufklärung der Regulationsmechanismen und auch der Wirkungsweise von Phosphat wird ein wichtiges Ziel zukünftiger Forschung sein und eventuell neue therapeutische Möglichkeiten zur Behandlung von krankhaften Abweichungen der Phosphathomöostase eröffnen. N2 - Phosphate is an exceptionally important component of bone mineral and is necessary for the osteogenic differentiation of mesenchymal stem cells. In the last decade, several substances have been identified by the analysis of pathological mechanisms that underlie disorders in phosphate homeostasis. These substances, the so-called “phosphatonins”, seem to have a specific function in the regulation of phosphate metabolism. Phosphatonins, such as FGF23 (fibroblast growth factor 23), sFRP4 (secreted frizzled related protein 4), FGF7 (fibroblast growth factor 7) and MEPE (matrix extracellular phosphoglycoprotein) are able to induce a state of negative phosphate balance by reducing renal phosphate reabsorption. The aim of this study was to elucidate possible interactions between bone forming cells, phosphate, and the known signal molecules of phosphate homeostasis. To this end, immortalized experimental cell lines of mesenchymal stem cells (hMSC-TERT) and fetal osteoblasts (hFOB) were stimulated in a dose- and time-dependent manner with augmented levels of phosphate (1.25 mM to 20 mM, 0 to 48 h). In order to detect the influence of increased phosphate levels on the expression of genes, which are markers of osteogenic differentiation and components of phosphate homeostasis, the method of quantitative real-time PCR was established in the workgroup. Col1 (collagen 1), OC (osteocalcin), AP (alkaline phosphatase) and OP (osteopontin) were analyzed as markers of differentiation; Pit-1 (sodium-phosphate transporter), sFRP4, MEPE and FGF23 as key-players in phosphate homeostasis; while Aktin and EF1a were used as housekeeping-genes. Real-time PCR was proceeded following the SYBR® Green method; the PCR efficiency was evaluated with LinRegPCR; finally the expression-ratios were calculated by REST© and REST 2005 - once using the evaluated efficiency and once using the optimal efficiency (E=2). It was shown that Pit-1 is expressed in hMSC-TERT and hFOB cells. For both cell lines it was obvious that the expression of sFRP4 is down-regulated by increasing phosphate concentrations or increasing duration of phosphate stimulation. Comparing all stimulated samples with all unstimulated controls, the expression ratio of sFRP4 decreased at half the initial value (0.52; p<0.05) in hMSC-TERT, and decreased at two-thirds of the initial value (0.67; p<0.05) in hFOB. This seems to be a strong indication that phosphate is able to down-regulate the expression of sFRP4 in hMSC-TERT and hFOB. Concerning Pit-1, one could suppose that the mRNA-expression was increased in hMSC-TERT cells following the stimulation with phosphate. In hFOB cells, this observation could not be made. Within both cell lines, no gene-expression pattern could be found that indicates the beginning of a differentiation process. The observed phosphate-sensitivity of sFRP4 in mesenchymal stem cells and osteoblasts permits us to assume that sFRP4 is involved in the physiological regulation of phosphate metabolism. Whether other phosphatonins are involved in such signaling-axis remains to be elucidated. By acting as a Wnt-antagonist, it can be assumed that sFRP4 plays a more important role in differentiation than previously known. Furthermore, the aim of this work was to establish a gene-expression-system (Tet-On™-system) in adult mesenchymal stem cells, by which it is possible to induce the expression of a target-gene in a tetracycline-dependent manner. The first transfection was accomplished successfully; the expression of a test-reference-vector was induced notedly by doxycycline. sFRP4 was projected as first gene being overexpressed by the Tet-On™-system. For this aim, sFRP4 was isolated, sequenced and cloned and is now ready to use in this manner. Revealing the mechanisms of regulation and the biological effects of phosphate in organisms will remain one topic of further investigation and will perhaps offer new therapeutic strategies for the treatment of disorders in phosphate homeostasis. KW - Phosphat KW - sFRP4 KW - mesenchymale Stammzellen KW - quantitative real-time PCR KW - osteogene Differenzierung KW - phosphate KW - sFRP4 KW - mesenchymal stem cells KW - quantitative real-time PCR KW - osteogenic differentiation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22738 ER -