TY - THES A1 - Massih, Bita T1 - Human stem cell-based models to analyze the pathophysiology of motor neuron diseases T1 - Humane Stammzell-basierte Modelle zur Analyse der Pathophysiologie von Motoneuronerkrankungen N2 - Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins. N2 - Motoneuronerkrankungen (MNE) umfassen eine Vielzahl klinisch und genetisch heterogener Erkrankungen, die zur Degeneration von Motoneuronen (MN) und zu beeinträchtigten motorischen Funktionen führen. MN koordinieren und steuern Muskelbewegungen, indem sie ihr Signal an eine Zielmuskelzelle übertragen. Die synaptischen Endungen des MN-Axons und die Kontaktstelle der Muskelzelle bilden dabei die präsynaptischen und postsynaptischen Strukturen der neuromuskulären Endplatte (NME). Bei MNE zeichnen sich synaptische Dysfunktion und Synapseneliminierung bereits vor dem Verlust von MN ab, was darauf hindeutet, dass die NME ein frühes Ziel in der pathophysiologischen Kaskade ist, die zum MN-Tod führt. In dieser Studie haben wir neue experimentelle Strategien zur Analyse humaner MNE mithilfe von humanen induzierten pluripotenten Stammzellen (iPSZ) entwickelt und pathophysiologische Mechanismen bei zwei verschiedenen MNE untersucht. Um humane MNE zu untersuchen sind Zellkultursysteme erforderlich, die die Verbindung von MN mit ihren Zielmuskelzellen ermöglichen, um NME zu bilden. Im ersten Teil dieser Studie haben wir ein humanes neuromuskuläres Co-Kultursystem etabliert und validiert, das aus iPSZ abgeleiteten MN und 3D Skelettmuskelgewebe aus Myoblasten besteht. Wir haben 3D Muskelgewebe erzeugt, indem wir primäre Myoblasten in einer definierten extrazellulären Matrix in selbst gefertigten Silikonschalen kultivierten, die die 3D-Gewebebildung unterstützen. Anschließend wurden iPSZ von gesunden Spendern und iPSZ von Patienten mit der MNE Amyotrophe Lateralsklerose (ALS) in MN differenziert und für neuromuskuläre 3D Co-Kulturen verwendet. Mithilfe von immunhistochemischen Untersuchungen, Calcium-Imaging und pharmakologischen Stimulationen konnten wir die Funktionalität des 3D Muskelgewebes und neuromuskulären 3D Co-Kulturen charakterisieren und validieren. Anschließend wurde das System als in vitro Modell zur Untersuchung der Pathophysiologie von ALS verwendet. ALS Co-Kulturen mit MN, die eine Superoxid Dismutase 1 (SOD1)-Genmutation aufwiesen, zeigten eine Abnahme der neuromuskulären Verbindung, der Muskelkontraktion und des axonalen Wachstums. Zusammenfassend stellt dieses Co-Kultursystem ein humanes Modell für die Untersuchung von MNE dar, das Aspekte der ALS-Physiologie rekapitulieren kann. Im zweiten Teil dieser Studie konnten wir eine Beeinträchtigung der unkonventionellen Proteinsekretion (UPS) von Sod1 als pathologischen Mechanismus bei Pleckstrin homology domain-containing family G member 5 (Plekhg5)-assoziiertem MNE identifizieren. Sod1 ist ein cytosolisches Protein ohne Signalsequenz für konventionelle Sekretion. Stattdessen wird die UPS über sekretorische Autophagie-Mechanismen reguliert. Unsere Ergebnisse zeigen, dass Plekhg5-Depletion in primären MN und NSC34-Zellen zu einer beeinträchtigten Sekretion von Wildtyp-Sod1 führt, was darauf hinweist, dass die UPS von Sod1 Plekgh5 abhängig ist. Indem verschiedene Schritte während der Biogenese von Autophagosomen gestört wurden, konnten wir nachweisen, dass die Plekhg5-regulierte Sod1-Sekretion Autophagie abhängig ist. Um unsere Ergebnisse in einem klinisch relevanteren Modell zu analysieren, wurden humane iPSZ-MN von gesunden Spendern und ALS-Patienten mit SOD1-Mutationen untersucht. Hier fand sich, dass die Sekretion von mutiertem SOD1 in ALS-MN im Vergleich zu gesunden und isogenen Kontrollen verringert ist. Dabei konnten wir zeigen, dass eine verringerte SOD1 Sekretion in ALS-MNs mit einer verringerten Expression von PLEKHG5 einhergeht. Um diese Korrelation zu bestätigen, wurden Kontroll-MN nach PLEKHG5-Depletion untersucht und eine verminderte SOD1-Sekretion dokumentiert, was auf eine PLEKHG5 Abhängigkeit hindeutet. Zusammenfassend konnten wir zeigen, dass Plekh5 die UPS von Sod1 in Maus MN und humanen MN reguliert und dass die Sod1-Sekretion Autophagie abhängig erfolgt. Unsere Daten belegen eine bislang noch nicht gezeigte mechanistische Verknüpfung zwischen zwei MNE-assoziierten Proteinen. KW - Tissue Engineering KW - NMJ (neuromuscular junction) KW - MND KW - SOD1 KW - ALS KW - PLEKHG5 KW - Co-culture KW - 3D muscle KW - Motoneuron KW - Stammzellen KW - Neuromuskuläre Endplatte KW - Induzierte pluripotente Stammzelle KW - Motoneuron-Krankheit KW - Myatrophische Lateralsklerose KW - Zellkultur KW - Motorische Endplatte KW - Induced pluripotent stem cells KW - Motor neuron disease KW - Amyotrophic lateral sclerosis KW - Cell culture Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346374 PB - Frontiers in Cell and Developmental Biology ER - TY - THES A1 - Frank, Nicolas Clemens T1 - Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel für die Amyotrophe Lateralsklerose T1 - Local Axonal Function of CNTF-STAT3 Signaling in Motoneurons of the pmn-Mouse – a Mouse Model for Amyotrophic Lateral Sclerosis N2 - 1. Zusammenfassung Während der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege für Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenläsion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell für die Amyotrophe Lateralsklerose, führt die Gabe von CNTF, nicht aber von GDNF zu einem verzögerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Auslöser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das für eines von fünf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschlüsseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Primäre pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erhöhte Anzahl axonaler Schwellungen mit einer anomalen Häufung von Mitochondrien - ein frühes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus älteren Untersuchungen war bekannt, dass CNTF über den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen führt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabhängigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abhängige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilität von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen primärer pmn mutierter und wildtypischer Motoneurone erhöht und einen Anstieg von ATP auslöst. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) auslöst, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien führt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, nämlich axonale Mikrotubuli und Mitochondrien. N2 - 2. Summary Both during development and after injury neurotrophic factors induce signaling pathways that regulate apoptosis, differentiation, growth and regeneration of neurons. In newborn rodents, treatment with GDNF, BDNF and CNTF can reduce the loss of motoneurons after peripheral nerve lesion. In the pmn mutant mouse, a model for amyotrophic lateral sclerosis, CNTF but not GDNF delays disease onset and slows down the course of motoneurons degeneration. Pmn mutant mice, suffer from a point mutation in tubulin specific chaperon E (Tbce) gene that codes for one of five tubulin specific chaperones (TBCA-TBCE) and is necessary for proper -tubulin heterodimer formation. The work presented here was designed to study the specific signaling pathways that are used by CNTF for attenuating progression of motoneuron degeneration in pmn mutant mice. Primary motoneurons from pmn mutant mice show reduced axon growth and irregular axonal swellings with abnormal accumulation of mitochondria – an early hallmark of pathology in ALS patients. In vitro, CNTF but not BDNF or GDNF was able to rescue defective axon growth and to prevent bidirectional transport interruption. It has already been shown that CNTF acts via the tripartite transmembrane receptor complex, composed of CNTFR, LIFR and gp130 to recruit Janus kinases that subsequently phosphorylate STAT3 on tyrosine 705 (pSTAT3Y705). After application of CNTF, I observed that axonal pSTAT3Y705 fused to a fluorescent tag is not retrogradely transported to the nucleus. In contrast, CNTF induced phosphorylation of STAT3 at tyrosine 705 leads to a transcriptional independent local reaction in motor axons which is necessary and sufficient to rescue axon growth in pmn mutant motoneurons. Combining CNTF treatment with shRNA mediated knock-down of Stathmin in pmn mutant motoneurons shows that CNTF-STAT3 signaling leads to microtubule stabilization in axons as well as improving anterograde and retrograde mobility of axonal mitochondria. Interestingly, I additionally found that an acute application of CNTF increases the membrane potential of axonal mitochondria that is accompanied with a rise of ATP levels in pmn mutant and wildtype motoneurons. Unexpectedly, I found STAT3 phosphorylated on serine 727 co-localizing with mitochondria after CNTF application. These results demonstrate that multiple local targets of STAT3 exist in axons that modulate structure and function of microtubules and mitochondria. KW - Motoneuron KW - Myatrophische Lateralsklerose KW - CNTF KW - STAT3 KW - axonaler Transport KW - Motoneuronenerkrankung KW - Maus KW - Ciliary neurotrophic factor KW - Amyotrophe Lateralsklerose Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121065 ER -