TY - THES A1 - Kaufmann, Christina T1 - Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding T1 - Diskrete supramolekulare Architekturen bucht-verknüpfter Perylenbisimid Dimere durch Selbstassemblierung und Faltung N2 - Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 Å lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 Å result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 Å larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 Å) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based “null-aggregate” could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 Å defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly. N2 - Supramolekulare Selbstorganisationsprozesse von Perylenbisimid-(PBI)-Farbstoffen über nichtkovalente Kräfte führen zu einer Vielzahl unterschiedlicher PBI-Aggregatstrukturen welche sich in ihren einzigartigen optischen und funktionellen Eigenschaften unterscheiden. Diese Eigenschaften können bereits durch leichte strukturelle Veränderungen der gebildeten supramolekularen Strukturen drastisch beeinflusst werden (Kapitel 2.1), was die kontrollierte Selbstassemblierung von PBI-Farbstoffen zu einem zentralen Punkt aktueller Forschungsarbeiten macht. Dadurch soll es ermöglicht werden, innovative Materialien zu generieren, welche ein hohes Potenzial für unterschiedlichste Anwendungen aufzeigen, wie z.B. im Bereich der organischen Elektronik oder Photovoltaik. Da PBI-Farbstoffe eine starke Tendenz zur Bildung ausgedehnter Aggregatstrukturen aufweisen (Kapitel 2.2), war das Ziel dieser Arbeit, kleine, hoch-definierte PBI-Stapel zu generieren, was über die kontrollierte Steuerung ihres Aggregationsverhaltens ermöglicht werden sollte. Kapitel 2.3 gibt dabei einen Überblick über die hierfür in der Literatur verwendeten Strategien. Dabei konnte gezeigt werden, dass vor allem eine intra- bzw. intermolekulare Organisation von kovalent-verknüpften Bis-PBI-Farbstoffen herangezogen wird, um die Anzahl der PBI-Chromophore innerhalb des Aggregates zu limitieren. Dies konnte unter anderem durch eine sorgfältige Auswahl der verwendeten Linker-Einheiten realisiert werden, vor allem hinsichtlich ihrer Länge und Flexibilität. Durch den Einsatz von UV/Vis-, Fluoreszenz- und NMR-Spektroskopie kann ein eingehender Vergleich der molekularen und optischen Eigenschaften der Farbstoffe in Lösung sowohl im monomeren als auch im aggregierten Zustand durchgeführt werden. So konnte gezeigt werden, dass Linker-Einheiten, welche zwei PBI-Chromophore mit einem interplanaren Abstand von r < 7 Å vororganisieren, zu einer intramolekularen Faltung der Bis-PBI-Farbstoffe führen, wohingegen Linker-Einheiten mit einer Länge zwischen 7 - 11 Å eine intermolekulare Selbstorganisation der jeweiligen Bis-PBI-Farbstoffe begünstigen. Gewährleistet die verwendete Linker-Einheit einen interplanaren Abstand r > 14 Å zwischen den beiden PBI-Einheiten, so kommt es zur Erzeugung größerer, oligomerer PBI-Farbstoff-Stapel. Im ersten Teil dieser Arbeit (Kapitel 4) wurde die Exzitonen-Kopplung in einem hochdefinierten PBI-Viererstapel untersucht. Zu diesem Zweck wurde Bis-PBI 1 synthetisiert, dessen Aggregationsverhalten anschließend mittels konzentrationsabhängiger UV/Vis-Spektroskopie in THF und Toluol sowie mittels 2D-DOSY-NMR-Spektroskopie, ESI-Massenspektrometrie und AFM-Messungen ermittelt werden konnte. Dadurch konnte die intermolekulare Dimerisierung von Bis-PBI 1 und damit die Ausbildung hoch-definierter PBI-Viererstapel nach erfolgter Aggregation bestätigt werden. In Zusammenarbeit mit der Gruppe von Dongho Kim konnten weiterhin mittels Femtosekunden-Breitband-Fluoreszenz-Aufkonversions-Spektroskopie (FLUPS) erstmals Einblicke in die Exzitonendynamik innerhalb eines hoch definierten synthetischen Farbstoffaggregats jenseits von Dimeren gewonnen werden. Durch die detaillierte Analyse der vibronischen Linienform der frühen transienten Fluoreszenzspektren konnte gezeigt werden, dass das anfänglich gebildete Frenkel-Exciton nach erfolgter Anregung vollständig entlang des gesamten Viererstaples delokalisiert ist. Der eindeutige Nachweis des initialen, vollständig delokalisierten Frenkel-Exziton-Zustandes und seiner Lokalisation, stellen wichtige Ergebnisse dieser Studie dar Der zweite Teil dieser Arbeit (Kapitel 5) befasste sich mit der Einführung von vier hoch-definierten Bis-PBI-Folda-Dimeren Bis-PBI 2-4, für deren Synthese Linker-Einheiten unterschiedlicher Länge (r < 7 Å) und Flexibilität verwendet wurden. So konnte jeweils eine leicht variierende Anordnung der PBI-Chromophore im gefalteten Zustand generiert werden. Durch die Strukturaufklärung auf Basis von eingehenden UV/Vis-, CD-, Fluoreszenz- und 1D- und 2D-NMR-Studien konnte für alle Farbstoffe Bis-PBIs 2-4 die Faltung zu diskreten pi-Stapeln gezeigt werden. Die aus DFT-Berechnungen gewonnenen geometrieoptimierten Strukturen lassen nur geringfügig unterschiedliche Anordnungen der PBI-Farnstoffe erkennen, welche durch die verschiedenen Linker-Einheiten verursacht werden. Durch die resultierenden optischen Signaturen der Folda-Dimere Bis-PBIs 2-4, welche vom konventionellen Hj-Aggregat bis hin zu monomerenähnlichen Absorptionsmerkmalen reichen, konnte erstmals der experimentelle Nachweis eines PBI-basierten "Null-Aggregats" erbracht werden, bei dem sich JCoul und JCT vollständig gegenseitig kompensieren. Die Erkenntnisse dieses Kapitels verdeutlichen daher den erheblichen Einfluss der sogenannte kurzreichweitigen Exzitonen-Kopplung JCT auf die optischen Eigenschaften von PBI-Aggregaten. Im letzten Teil dieser Arbeit (Kapitel 6) wurden die Selbstorganisationsprozesse in klar definierten supramolekularen Aggregatstrukturen untersucht. Durch die systematische Verlängerung der Linker-Einheiten von 7 auf 15 Å, konnten durch Selbstorganisation unterschiedliche Aggregatstrukturen von hochdefinierten PBI-Viererstapeln bis hin zu längeren PBI-Oligomeren generiert werden. Zusammenfassend wurde in dieser Arbeit eine detaillierte Übersicht des Selbstorganisationsverhaltens von neun kovalent verknüpften Bis-PBI-Farbstoffen vorgestellt, welche anschließend hinsichtlich ihrer Struktur-Eigenschafts-Beziehung untersucht wurden. Die Ergebnisse bestätigen eine starke Excitonen-Kopplung in verschiedenen Bis-PBI-Aggregaten wie z.B. PBI-Folda-Dimeren oder hochdefinierten PBI-Viererstapeln, welche die optischen Eigenschaften der Farbstoffsysteme im aggregierten Zustand signifikant beeinflusst. KW - Supramolekulare Chemie KW - Perylenderivate KW - Selbstorganisation KW - perylene bisimide dimers KW - folda-dimer KW - null-aggregate KW - exciton dynamics KW - short-range JCT-coupling KW - spacer-controlled self-assembly KW - Elektronentransfer KW - Farbstoff KW - NMR-Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173005 ER - TY - INPR A1 - Hoche, Joscha A1 - Schmitt, Hans-Christian A1 - Humeniuk, Alexander A1 - Fischer, Ingo A1 - Mitrić, Roland A1 - Röhr, Merle I. S. T1 - The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer T2 - Physical Chemistry Chemical Physics N2 - The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck–Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6–7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale. KW - exciton dynamics KW - pyrene dimer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159656 UR - http://dx.doi.org/10.1039/C7CP03990E N1 - Submitted version ER - TY - JOUR A1 - Hoche, Joscha A1 - Schmitt, Hans-Christian A1 - Humeniuk, Alexander A1 - Fischer, Ingo A1 - Mitrić, Roland A1 - Röhr, Merle I. S. T1 - The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer JF - Physical Chemistry Chemical Physics N2 - The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck–Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6–7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale. KW - exciton dynamics KW - pyrene dimer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159514 UR - http://dx.doi.org/10.1039/C7CP03990E N1 - Accepted version VL - 19 IS - 36 ER - TY - THES A1 - Mann, Christoph T1 - Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen T1 - Exciton size and -dynamics in (6,5) carbon nanotubes N2 - Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanoröhren durch Absorption von Licht hauptsächlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenwärtig noch nicht vollständig verstanden. Zeitaufgelöste Spektroskopie bietet die Möglichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanoröhren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpräparation, der Aggregationsgrad sowie der durch das Lösungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengröße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanoröhren mittels transienter Absorptionsspektroskopie sowie stationärer und zeitaufgelöster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanoröhren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. Für die temperaturabhängigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilität bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengröße erfolgte mit Hilfe des Phasenraumfüllmodells, das die intensitätsabhängige Änderung der Oszillatorstärke eines Übergangs mit der Exzitonengröße verknüpft. Hierfür wurden leistungsabhängige Messungen der transienten Absorption durchgeführt und die Signalintensität des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Größen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengröße berechnen lässt, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu können und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten Röhrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale Überlapp von Photoabsorptions- und Photobleichbande Berücksichtigung fanden, ergab für individualisierte (6,5)-Nanoröhren einen Wert von 12.0 nm für die Größe des S1-Exzitons, während diese bei der aggregierten Röhrenprobe nur 5.6 nm beträgt. Die Probenabhängigkeit der Exzitonengröße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern für die Exzitonengröße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen für Vakuum, was verglichen zu einer experimentell in Lösung bzw. im Film bestimmten Exzitonengröße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengröße von 12.0 nm nicht erklärt werden. Setzt man experimentell und theoretisch für Vakuum bestimmte Werte für die Exzitonengröße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengröße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte für die Bindungsenergie von (6,5)-Kohlenstoffnanoröhren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgeschätzt. Weitere experimentelle und theoretische Untersuchungen könnten klären, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV für (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanoröhren durch eine Dynamik zwischen verschiedenen Zuständen sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese für die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabhängige Messungen der stationären und zeitaufgelösten Photolumineszenz sowie der transienten Absorption durchgeführt. Die Ergebnisse der stationären PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV für die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten lässt, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus möglich ist. Mit diesen Annahmen kann das temperaturabhängige Verhalten der stationären Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgelösten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte Löschen an Defektstellen oder Röhrenenden Berücksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder Röhrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgelöste PL-Messungen belegt werden. Abhängig von der zur Verfügung stehenden thermischen Energie und der Höhe der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschränkt werden, dass diese eine fast bis um den Faktor zwei längere PL-Lebensdauer aufweisen als höherenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgelöster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands hauptsächlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend geklärt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß für die Höhe der Potenzialbarrieren bzw. für die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass Sättigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanoröhren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begründen kann man dies damit, dass das Sättigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanoröhren einer starken Beeinflussung durch die Umgebung. Abhängig vom Lösungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz sättigt. N2 - Numerous theoretical and experimental studies have proved that in semiconducting carbon nanotubes, mainly excitons are created by light absorption. The photophysical properties and in particular the processes after optical excitation are to date not fully understood. Thanks to time-resolved spectroscopy, these processes can be pursued gaining detailed insight into the photophysical behavior of carbon nanotubes. Extrinsic factors like synthesis and preparation method, degree of aggregation as well as environmental effects appear to play a major role in this content. In this work, exciton size and dynamics in single-wall carbon nanotubes were studied by transient absorption spectroscopy as well as steady-state and time-resolved photoluminescence experiments. All measurements were done with semiconducting nanotubes of the (6,5)-chirality, which were obtained by density gradient ultracentrifugation. For temperature dependent measurements, an optimised surfactant stabilised gelatine film was developed which has a high temperature stability while minimising scattered light effects. The exciton size was determined by phase space filling analysis, which relates the intensity dependent reduction in oscillator strength of a transition with the size of the corresponding exciton. Therefore, the transient absorption was measured as a function of the power, and the intensity of the photobleach signal was plotted against the number of absorbed photons. The exciton size was calculated from the linear relationship between these two quantities at low exciton densities. Hence, great emphasis was put on working with high precision at low excitation fluences. In order to quantify the influence of the aggregation and in order to facilitate the comparison with literature, both individualised and aggregated nanotube samples were used in the experiments. From the data, the first subband exciton size was determined to be 12.0 nm and 5.6 nm for the individualised and the aggregated (6,5)-sample, respectively. Here, for the first time, both the stimulated emission and the spectral overlap of the photoabsorption and photobleach signal were taken into account. Thus, the exciton size strongly depends on the sample. This makes it difficult to compare the results with experimental values as shown in literature which almost exclusively lie between 1.0 nm and 4.5 nm but were partially determined using aggregated and polydisperse samples. Theory predicts an exciton size between 1 nm and 4 nm. In fact, some of these theoretical values were obtained for vacuum conditions leading to a smaller exciton size compared to experimental determination. However, the discrepance from the exciton size determined in this work can not be explained purely by this effect itself. Relating experimental and theoretical values of the exciton size and binding energy, an exciton size of 12.0 nm corresponds to a binding energy between 0.21 eV and 0.27 eV. Two-photon absorption experiments yield an exciton binding energy between 0.37 eV and 0.42 eV using a simplified cylindrical model. Further experimental and theoretical studies might clarify if an exciton binding energy between 0.21 eV and 0.27 eV is a realistic approach. In (6,5) carbon nanotubes, both radiative and nonradiative decay to the ground state appear to be influenced by multiple excitonic states as well as exciton diffusion. To better understand the relevant recombination processes, the stationary and time-resolved photoluminescence as well as the transient absorption was measured as a function of temperature. The stationary PL experiments suggest an exciton scattering between the optically active singlet state with A2 symmetry (hereinafter referred to as [B]) and a lower lying dark state [D]. Neglecting radiative recombination from [D], the data is well-explained by a dark-bright excitonic splitting of 5 meV and a nonthermal exciton distribution. With regard to the band structure of (6,5) carbon nanotubes, this gives rise to the presumption that [D] is the dipole forbidden A1 singlet state. This assumption explains the temperature dependent behaviour of the stationary photoluminescence quite well, but not the behaviour of the time-resolved photoluminescence. A model that is dominated solely by diffusion does not work either. Therefore, to interpret the PL decay, both exciton scattering between [B] and [D] and diffusion limited quenching at defects or tube ends have to be taken into account. The importance of exciton diffusion to defects or tube ends where non-radiative decay preferentially takes place can be proved by spectral- and time-resolved PL measurements. Depending on the available thermal energy and the height of the potential barriers in the considered system, diffusion can be restricted in that way that low energy excitons which are located in minimums of the potential energy landscape exhibit an almost twice longer PL lifetime than high energy excitons. The differences in transient absorption and time-resolved PL between 14 K and 35 K demonstrate that recovery to the ground state occurs from another state, different from the state [B] in radiative recombination. The nature of this dark state remains unclear. Due to inhomogeneous broadening, the FWHM of the absorption bands is a measurement of the height of the potential barriers and of the energetic exciton distribution in the excited state. In this work, the fact that transient absorption saturation behaviour of (6,5) carbon nanotubes and absorption band width follow the same trend could be shown by four different nanotube suspensions. The reason for this is that transient absorption saturation behaviour is governed by exciton-exciton annihilation. Due to their one-dimensional structure, carbon nanotubes are strongly influenced by environmental effects, resulting in a varying inhomogeneous broadening of the absorption bands and thus in different excited state potential barriers for various solvents and dispersion agents. Low potential barriers permit a long ranged exciton diffusion. Hence, efficient exciton-exciton annihilation takes place at comparatively low exciton densities and the transient absorption signal saturates at low pulse fluences. KW - Exziton KW - (6,5)-Kohlenstoffnanoröhren KW - Exzitonengröße KW - Transiente Absorption KW - Exzitonendynamik KW - Zeitaufgelöste Photolumineszenz KW - (6,5) carbon nanotubes KW - exciton size KW - transient absorption KW - exciton dynamics KW - time-resolved photoluminescence KW - Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Zeitauflösung KW - Zeitaufgelöste Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116712 ER -