TY - JOUR A1 - Brand, Jessica S. A1 - Forster, Leonard A1 - Böck, Thomas A1 - Stahlhut, Philipp A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Albrecht, Krystyna T1 - Covalently Cross-Linked Pig Gastric Mucin Hydrogels Prepared by Radical-Based Chain-Growth and Thiol-ene Mechanisms JF - Macromolecular Bioscience N2 - Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. Here, chain-growth and step-growth (thiol-ene) free-radical cross-linked hydrogels prepared from commercially available pig gastric mucin (PGM) are introduced and compared as cost-efficient and easily accessible alternative to the more broadly applied bovine submaxillary gland mucin. For this, PGM is functionalized with photoreactive acrylate groups or allyl ether moieties, respectively. Whereas homopolymerization of acrylate-functionalized polymers is performed, for thiol-ene cross-linking, the allyl-ether-functionalized PGM is cross-linked with thiol-functionalized hyaluronic acid. Morphology, mechanical properties, and cell compatibility of both kinds of PGM hydrogels are characterized and compared. Furthermore, the biocompatibility of these hydrogels can be evaluated in cell culture experiments. KW - click chemistry KW - photopolymerization KW - hydrogels KW - mucin KW - thiol-ene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318453 VL - 22 IS - 4 ER - TY - JOUR A1 - Hahn, Lukas A1 - Beudert, Matthias A1 - Gutmann, Marcus A1 - Keßler, Larissa A1 - Stahlhut, Philipp A1 - Fischer, Lena A1 - Karakaya, Emine A1 - Lorson, Thomas A1 - Thievessen, Ingo A1 - Detsch, Rainer A1 - Lühmann, Tessa A1 - Luxenhofer, Robert T1 - From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking JF - Macromolecular Bioscience N2 - Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification. KW - chemical crosslinking KW - biofabrication KW - bioprinting KW - hydrogels Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257542 VL - 21 IS - 10 ER - TY - JOUR A1 - Borova, Solomiia A1 - Tokarev, Victor A1 - Stahlhut, Philipp A1 - Luxenhofer, Robert T1 - Crosslinking of hydrophilic polymers using polyperoxides JF - Colloid and Polymer Science N2 - Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications. KW - hydrogels KW - radical crosslinking KW - poly(2-ethyl-2-oxazoline) KW - thermal crosslinking KW - peroxide containing copolymers Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238109 VL - 298 ER -