TY - THES A1 - Ott, Martin T1 - Lautstärkereduzierte Magnetresonanztomographie T1 - Acoustic noise reduced MRI N2 - Messungen mit Magnetresonanztomographen sind seit jeher mit hohen Lautstärken verbunden. Deshalb wird das Gerät im Volksmund auch als „laute Röhre“ bezeichnet. Bisher wurde das Problem mit Kopfhörern, Ohrenstöpseln und akustischer Dämmung des MRT-Scanners angegangen. Auch in der Fachliteratur wird das Problem als gegeben angesehen und es werden kaum wissenschaftliche Lösungsansätze zur Lautstärkereduktion beschrieben. Das Ziel der vorliegenden Arbeit war es, Bildgebungs-Sequenzen für schwer‑optimierbare Bildkontraste und sogenannte Standard-Kontraste aus dem klinischen Umfeld hinsichtlich der Lautstärke zu optimieren. Viele dieser Kontraste können bereits mit einfachen Algorithmen wie dem Gradientenglättungsalgorithmus erfolgreich in Hinblick auf die Lautstärke optimiert werden. Allerdings existieren auch Sequenzen beziehungsweise Kontraste, die aufgrund ihrer Eigenschaften nicht von einem solchen Algorithmus profitieren können. Die Optimierungen und Änderungen sollten software-seitig erfolgen, das heißt durch Änderung der Gradientenformen und Datenakquisition. In der Arbeit wurden die grundlegenden Zusammenhänge zwischen den verwendeten Geräteparametern und der Lautstärke untersucht und zudem die physikalischen Ursachen der Lautstärkeentwicklung hergeleitet. Diese konnten anhand der Lorentz-Kräfte quantitativ beschrieben werden. Somit konnten die Hauptursachen der Lautstärkeentwicklung identifiziert werden. Diese sind abhängig von der Gradienten-Steig-Rate, aber auch von der Amplitude der Gradienten. Es konnte gezeigt werden, dass eine Minimierung dieser Gradientenparameter zu einer geringeren Lautstärkeentwicklung führt. Allerdings führt diese Minimierung in den meisten Fällen auch zu einer systematischen Verlangsamung des Sequenzablaufs, was das Erreichen bestimmter Echozeiten und Bildkontraste unmöglich macht. Zu den problematischen Kontrasten bezüglich der Lautstärkereduktion zählten der T1- und PD‑Kontrast einer Turbo-Spin-Echo-Sequenz. Durch die Kombination von mehreren Maßnahmen, wie der Adaption der k-Raum-Akquisition, der HF-Pulse-Parameter und den Gradientenformen, war es möglich, die Lautstärke in Beispielmessungen um bis zu 16,8 dB(A) zu reduzieren. Wie bei der kürzlich veröffentlichten Methode zur Reduktion für die T2‑gewichteten Kontraste, wurde dies zulasten einer Messzeitverlängerung von bis zu 50% erreicht. Die Endlautstärke betrug dabei circa 81 dB(A). Mit der Lautstärkeoptimierung der klinisch bedeutsamen T1- und PD‑Kontraste wurde die Palette an leisen, mit der Turbo-Spin-Echo‑Sequenz erzielbaren, Standard-Kontrasten (T1, T2 und PD) nun vervollständigt. In einem anderen Ansatz wurde die Anwendbarkeit des CAT-Konzepts auf die Lautstärkereduktion untersucht. Beim CAT-Konzept wird die Messung in Einzelmessungen mit verschiedenen Parametern unterteilt. Bisher wurde dieser Ansatz zur SAR-Reduktion verwendet. Das Zentrum des k-Raums wird mit einer SAR-intensiven, kontrastgebenden Messung aufgenommen. Der verbleibende Teil des k-Raums wird mit einer SAR-reduzierten, bildstrukturrelevanten Messung aufgenommen. In dieser Arbeit wurde die Übertragung des CAT-Konzepts auf die Lautstärkereduktion untersucht. Anstelle von SAR-intensiven und SAR‑reduzierten Messungen, wurde hier die Unterteilung in „laute“ und „leise“ Messungen untersucht. Dabei wurden Überlegungen angestellt, die es für eine Vielzahl an Messungen ermöglichen, einen großen Teil der Messung leise zu gestalten ohne die Bildqualität oder den Bildkontrast zu verändern. In einem weiteren Schritt wurden Überlegungen für die Lautstärkereduktion der lauten Messungen vorgestellt. Anschließend wurden für eine GRE- und TSE-Sequenz Optimierungsschritte evaluiert und die Lautstärke gemessen. Der hinsichtlich der Lautstärkeoptimierung herausforderndste Bildkontrast ist die diffusionsgewichtete Bildgebung. Diese besitzt eine Diffusions-Präparation zur Sichtbarmachung der Diffusivität, bei der die maximal mögliche Gradienten-Amplitude verwendet wird. Ebenso werden nach der Präparation die Daten mit einem EPI‑Akquisitionsmodul mit Blip-Gradienten akquiriert, das mit einem charakteristischem „Pfeifton“ einhergeht. Zum einen wurden die Gradientenformen konsequent angepasst. Zum anderen wurde eine Segmentierung der k-Raum-Akquisition in Auslese-Richtung verwendet, um die Gradienten‑Steig-Raten zu reduzieren. Auch hier konnte eine deutliche Lautstärkereduktion von bis zu 20,0 dB(A) erzielt werden. Dies wurde zulasten einer Messzeitverlängerung von 27% ‑ 34% im Vergleich zur Standard-Sequenz erreicht. Durch eine weitere Messzeitverlängerung um bis zu 23% kann die Lautstärke um weitere 0,9 dB(A) reduziert werden. Dabei hängt die genaue Messzeitverlängerung vom verwendeten GRAPPA-Faktor und der Anzahl der Auslese-Segmente ab. Die entstandene Sequenz wurde in mehreren Kliniken erfolgreich erprobt. Bisher mussten bei MRT-Messungen stets Kompromisse zwischen „hoher Auflösung“, „hohem SNR“ und „geringer Messzeit“ getroffen werden. Als Anschauung dafür wurde das „Bermuda‑Dreieck der MRT“ eingeführt. Da alle drei Größen sich gegenseitig ausschließen, muss stets ein Mittelweg gefunden werden. Einige der in dieser Arbeit erzielten Erfolge bei der Lautstärkereduktion wurden auf Kosten einer verlängerten Messzeit erreicht. Daher ist es naheliegend, das „Bermuda-Dreieck der MRT“ um die Dimension der „geringen Lautstärke“ zu einer „Bermuda-Pyramide der MRT“ zu erweitern. Damit muss die Lautstärkeentwicklung in die Mittelweg‑Findung miteinbezogen werden. Die in dieser Arbeit erzielten Lautstärken liegen in der Größenordnung zwischen 80 ‑ 85 dB(A). Somit können Messungen bei Verwendung von Gehörschutz angenehm für den Patienten durchgeführt werden. Durch neue Techniken der Zukunft wird es wahrscheinlich sein, höhere Auflösungen, höheres SNR oder kürzere Aufnahmedauern zu erzielen, beziehungsweise stattdessen diese in eine geringe Lautstärke „umzuwandeln“. Ebenso werden möglicherweise auf der hardware-technischen Seite Fortschritte erzielt werden, so dass in neueren MRT-Scannergenerationen mehr Wert auf die Lärmdämmung gelegt wird und somit der softwarebasierten Lautstärkereduktion einen Schritt entgegen gekommen wird. Damit könnten zukünftige Patienten-Messungen gänzlich ohne störenden Gehörschutz durchgeführt werden. N2 - Magnetic resonance imaging (MRI) measurements have always been related to high acoustic noise. Therefore, in common parlance MRI is referred to as the “loud tube”. Until now, the acoustic noise was mitigated by the use of headphones and ear plugs as well as acoustic dampening of the MR system. In literature, the problem is more or less acknowledged and solutions to the acoustic noise are rarely provided. The aim of this work was to optimize MR sequences, which generate so-called standard clinical MRI contrasts, for acoustic noise. Many of these contrasts could be optimized for acoustic noise by a gradient smoothing algorithm. Nevertheless, there are sequences and contrasts which cannot benefit from such algorithms and therefore need manual optimization. Software-based optimizations are performed by adapting the gradient waveforms and data acquisition. In this work, the main relationships between parameter settings of the MRI machine and acoustic noise were explored. The physical origin of acoustic noise in the form of Lorentz forces was derived from fundamental equations. The main acoustic noise sources are gradient slew rate and gradient amplitude. It was shown that minimization of these quantities leads to reduced acoustic noise. However, this is mostly accompanied by slowing down the sequence and thus certain echo times and contrasts cannot be reached. T1- and PD-weighted contrasts, acquired with a turbo spin-echo sequence, are problematic contrasts regarding acoustic noise reduction. This problem was tackled by a combination of several approaches such as an adaption of the k-space acquisition, changes to the RF-pulse parameters, and modifications of the gradient waveform. An acoustic noise reduction of up to 16.8 dB(A) was achieved. As for the previously published method for acoustic noise reduction in T2-weighted contrasts, this success came at the cost of an increase of measurement time by 50%. The target acoustic noise level was around 81 dB(A). With this optimization, the palette of quiet standard clinical contrasts, consisting of T1-, T2- and PD-weighted contrasts, can be realized with the turbo spin-echo sequence. In a different approach, the Combined-Acquisition (CAT) concept was applied to acoustic noise reduction. In implementing the CAT concept, each measurement is divided into two measurements with different parameters. This approach was previously used for SAR reduction. The center of k space is acquired using a high-SAR measurement in which contrast is relevant. The remaining k-space area is acquired using a low SAR, contrast-irrelevant measurement. In this work, the CAT concept was applied to acoustic noise reduction. Each measurement was divided into ‘quiet’ and ‘loud’ segments instead of dividing into high-SAR and low-SAR measurements. Considerations allowed for acoustic noise reduction without disrupting the image quality or contrast. In successive steps, the approach was applied to the remaining loud segment of the measurement. This process was executed for a GRE and a TSE sequence. Corresponding acoustic noise measurements were performed. One of the most challenging contrasts in terms of acoustic noise reduction is diffusion weighted imaging. It employs maximum gradient amplitudes in the preparation pulses which sensitize the MR signal to diffusivity. Data acquisition is performed by an EPI readout including blipped gradients. This readout is known for its whistling sound. Therefore, the gradient waveforms were consequently adapted. A k-space segmentation in the readout direction was employed to reduce the gradient slew rates. In this work, an acoustic noise reduction of up to 20.0 dB(A) could be achieved using an adapted readout segmented EPI sequence. This reduction in acoustic noise came at the cost of an increase of measurement time by 27% to 34% compared to the standard sequence. Spending additional 23% of acquisition time can further reduce the acoustic noise by 0.9 dB(A). The exact increase in measurement time depends on the employed GRAPPA factor and the number of readout segments. The optimized sequence was successfully validated in various clinical sites. Until now, compromises had to be made between high resolution, high SNR, and short acquisition time. This compromise can be described as the “Bermuda triangle of MRI”. Trade-offs exist between all three quantities. A compromise has to be chosen in all cases. In this work, some of the achieved acoustic noise reductions came at the cost of increased measurement time. Therefore, the dimensionality of the Bermuda triangle is extended with the addition of low acoustic noise. This yields the “Bermuda triangular pyramid of MRI”. Thus, acoustic noise has to be included in achieving a balance of desired properties in MR image acquisition. In this work, the obtained acoustic noise levels were on the order of 80–85 dB(A). Upon the use of ear protection, measurements became comfortable for the patients. As further advancements in imaging technology are made, it may be likely to achieve higher resolution, higher SNR, or shorter acquisition times, which could instead be traded for lower acoustic noise levels. In addition, it is possible that MRI machine manufacturers will put more effort into hardware based acoustic noise dampening of the devices in order to meet software-based acoustic noise reduction. Therefore, patient measurements could be possible without the need for additional acoustic noise protection in the future. KW - Kernspintomografie KW - Biophysik KW - Magnetische Kernresonanz KW - Lautstärkereduktion KW - Lärm KW - Krach KW - Patientenkomfort KW - Lärmbelastung KW - Geräuschminderung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133921 ER - TY - THES A1 - Benkert, Thomas T1 - Neue Steady-State-Techniken in der Magnetresonanztomographie T1 - Novel Steady-State Techniques for Magnetic Resonance Imaging N2 - Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verhältnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgründe hierfür sind Signalauslöschungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur Lösung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP für die MR-Diagnostik zu ermöglichen. Magnetfeldinhomogenitäten, die im Wesentlichen durch Suszeptibilitätsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, äußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalauslöschungen effizient zu entfernen. Während für bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden müssen, ist für die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizufälligem Abtastschema ermöglicht. Die notwendigen Bestandteile können mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes ermöglicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bezüglich ihrer Robustheit als auch bezüglich der notwendigen Messzeit übertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gewöhnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgelöste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitivät der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgeführt werden, ohne dass nennenswerte Beeinträchtigungen der Bildqualität auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gewöhnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten benötigt werden. Dies führt zu einer entsprechenden Verlängerung der zugehörigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, ermöglicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenitäten. Dennoch ist es möglich, dass Signalauslöschungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt primär bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierfür wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erhöhten Messzeit ermöglichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkohärente Bildartefakte, die sich jedoch durch eine Erhöhung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu wählen, bei denen bereits intrinsisch eine verhältnismäßig hohe Anzahl von Projektionen benötigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgelösten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gewöhnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdrückungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten für die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. Während die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente Lösungen für das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die Möglichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einfügen von Inversionspulsen in ungleichmäßigen Abständen aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gewöhnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit können bei gleichbleibender oder sogar verbesserter Bildqualität aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gewöhnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingefügten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen möglich ist, zusätzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgelöscht sind. Diese Substanzen können am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine ähnlich hohe klinische Relevanz aus. Die mögliche Bedeutung der vorgestellten Methode für die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur Lösung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software für die Rekonstruktion von RA-TOSSI-Datensätzen wurde für Siemens Scanner implementiert. Folglich sind beide Methoden für klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt. N2 - The bSSFP sequence combines short acquisition times with a high signal-to-noise ratio, and is therefore a promising imaging technique. However, aside from a few applications, this method is hardly established in the clinical routine. The main reasons for this are signal voids that arise as banding artifacts and the obtained T2/T1-weighted mixed contrast. The goal of this dissertation was to develop strategies to overcome these limitations and allow for a more widespread use of bSSFP for MR diagnostics. In bSSFP imaging, magnetic field inhomogeneities, which are mainly caused by susceptibility differences and imperfections of the scanner hardware, manifest as banding artifacts. In order to efficiently remove these artifacts from the image, DYnamically Phase-cycled Radial bSSFP (DYPR-SSFP) was proposed. While existing methods rely on the acquisition and subsequent combination of several separate bSSFP images, banding removal with DYPR-SSFP requires the acquisition of only a single data set. This is achieved by combining a dynamic phase-cycle with a radial trajectory and a quasi-random acquisition scheme. The individual components of this method can be implemented with little effort. Furthermore, no specific reconstruction scheme is necessary, guaranteeing the broad applicability of the developed approach. DYPR-SSFP outperformed conventional methods for banding removal both in robustness and scan time. In order to demonstrate the applicability of DYPR-SSFP beyond conventional imaging, the method was also applied to fat-water separation. Based on the Dixon technique, fat and water images were generated with high resolution. Due to the motion robustness of the underlying radial trajectory, measurements could be performed during free-breathing, without notable degradation of image quality. Abdominal images showed neither regional fat-water flipping nor residual banding artifacts. A drawback of standard Dixon-based fat-water separation is the fact that several separate images with different echo times have to be acquired, therefore prolonging the respective scan time. This can be overcome by using a multiecho sequence. It was demonstrated that the combination of such multiecho sequence and Dixon DYPR-SSFP allows for robust, banding-free fat-water separation in clinically acceptable scan times. DYPR-SSFP guarantees removal of banding artifacts even for strong magnetic field inhomogeneities. However, signal voids may remain due to intravoxel dephasing. This problem primarily arises when imaging metallic implants or when moving to ultra-high field strengths. To address this issue, the combination of DYPR-SSFP with the so-called z-shim technique was investigated, allowing the removal of these artifacts at the expense of an increased measurement time. Due to the applied dynamic phase-increment, radial projections which are acquired with DYPR-SSFP exhibit slightly different signal levels and phases. This results in incoherent artifacts, that can be effectively reduced by increasing the number of acquired projections. Therefore, DYPR-SSFP should be preferably applied when many projections are intrinsically necessary. It has been demonstrated that, besides high resolution imaging, the choice of a 3D radial trajectory is a promising combination. The proposed 3D DYPR-SSFP technique allowed isotropic banding-free bSSFP imaging without any expense of additional scan time compared to a conventional bSSFP acquisition. Residual artifacts caused by the dynamic phase-cycle could be effectively mitigated by applying a denoising algorithm. Volunteer measurements showed that 3D DYPR-SSFP is a promising candidate for imaging of the cranial nerves and the musculoskeletal system. While DYPR-SSFP and all presented resulting methods constitute an efficient solution for banding artifacts in bSSFP imaging, the proposed RAdial T-One sensitive and insensitive Steady-State Imaging (RA-TOSSI) method addresses the problem of the mixed contrast in bSSFP imaging. The possibility to generate T2-contrast with bSSFP has been shown before. The previous approach is based on the fact that T1-relaxation during the transient phase of a bSSFP acquisition can be suppressed by inserting unequally spaced inversion pulses. Thus, the resulting image shows a clinically relevant T2-contrast. The method which was presented as part of this dissertation relies on the same principle. However, instead of the originally proposed Cartesian trajectory, a radial trajectory in combination with a KWIC-filter reconstruction was applied. This allows the generation of several T2-weighted images as well as T2/T1-weighted images from a single RA-TOSSI dataset, while image quality remains comparable or even improves compared with existing methods. It could further be shown that varying the number of inversion pulses allows the generation of additional contrasts, where different tissue types are attenuated in the image. In the case of brain imaging for instance, these tissues comprise fat, gray matter, white matter, and CSF and offer high clinical relevance similar to T2-weighted images. Measurements of a patient with a brain tumor demonstrate the possible impact of the proposed method. In conclusion, the techniques developed as part of this dissertation present a valuable contribution to the solution of various problems which are associated with bSSFP imaging. Images acquired with DYPR-SSFP can be reconstructed directly at the scanner using existing, commercial reconstruction software. The software for the reconstruction of RA-TOSSI data was implemented for Siemens scanners. Therefore, both methods can be directly employed for clinical studies which remain as future work. KW - Kernspintomografie KW - Radiale Bildgebung KW - Steady-State-Sequenzen KW - balanced SSFP KW - Nicht-kartesische Bildgebung KW - Radial Imaging KW - Steady-State Sequences KW - balanced SSFP KW - Non-Cartesian Imaging KW - Magnetische Kernresonanz KW - Biophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115381 ER -