TY - INPR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diradical products of twisted double bonds T2 - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - diradicals KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160248 N1 - Submitted version of Julian Böhnke, Theresa Dellermann, Mehmet Ali Celik, Ivo Krummenacher, Rian D. Dewhurst, Serhiy Demeshko, William C. Ewing, Kai Hammond, Merlin Heß, Eckhard Bill, Eileen Welz, Merle I. S. Röhr, Roland Mitrić, Bernd Engels, Franc Meyer & Holger Braunschweig: Isolation of diborenes and their 90°-twisted diradical congeners. Nature Communications. Volume 9, Article number: 1197 (2018) doi:10.1038/s41467-018-02998-3 ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet Ali T1 - Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation T2 - Angewandte Chemie, International Edition N2 - Under a CO atmosphere the dihydrodiborene [(cAAC)HB=BH(cAAC)] underwent coordination of CO concomitant with reversible hydrogen migration from boron to the carbene carbon atom, as well as reversible CO insertion into the B=B bond. Heating of the CO-adduct resulted in two unusual cAAC ring-expansion products, one presenting a B=C bond to a six-membered 1,2-azaborinane-3-ylidene, the other an unprecedented nine-membered cyclic alkyne resulting from reductive cleavage of CO and spontaneous C≡C triple bond formation. KW - CO activation KW - diborene KW - ring expansion KW - insertion KW - cyclic (alkyl)(amino)carbene Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153318 N1 - This is the pre-peer reviewed version of the following article: Arrowsmith, M., Böhnke, J., Braunschweig, H. and Celik, M., Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation. Angew. Chem. Int. Ed. 2017, 129,14475 –14480. Accepted Author Manuscript. doi:10.1002/anie.201707907. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER -