TY - JOUR A1 - Wiessner, M. A1 - Rodriguez Lastra, N. S. A1 - Ziroff, J. A1 - Forster, F. A1 - Puschnig, P. A1 - Dössel, L. A1 - Müllen, K. A1 - Schöll, A. A1 - Reinert, F. T1 - Different views on the electronic structure of nanoscale graphene: aromatic molecule versus quantum dot JF - New Journal of Physics N2 - Graphene's peculiar electronic band structure makes it of interest for new electronic and spintronic approaches. However, potential applications suffer from quantization effects when the spatial extension reaches the nanoscale. We show by photoelectron spectroscopy on nanoscaled model systems (disc-shaped, planar polyacenes) that the two-dimensional band structure is transformed into discrete states which follow the momentum dependence of the graphene Bloch states. Based on a simple model of quantum wells, we show how the band structure of graphene emerges from localized states, and we compare this result with ab initio calculations which describe the orbital structure. KW - well KW - confinement KW - states KW - Ag(111) KW - photoemission KW - vicinal surfaces KW - coronene KW - energy KW - films KW - nanographenes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130184 VL - 14 IS - 113008 ER - TY - THES A1 - Sachs, Sönke T1 - Organische Halbleiter: Fundamentale Aspekte von Metallkontakten, hochgeordneten Schichten und deren Anwendung in Feldeffekttransistoren T1 - Organic semiconductors: Fundamental aspects of metal contacts, highly ordered films and the application in field effect transistors N2 - Eingebettet in ein Konzept zum Aufbau eines Hochleistungs-Feldeffekt-Transistors auf der Basis organischer Halbleiter (OFET), werden in der vorliegenden Dissertation fundamentale Aspekte des Aufbaus und der Funktion organischer Halbleiter-Bauelemente erforscht. Die Kenntnis, welche maximale Leistungsfähigkeit organische Halbleiter in OFETs prinzipiell erreichen können, ist von elementarem Interesse, sowohl um Transportmodelle zu verfeinern, als auch um Mechanismen und Optimierungsansätze zu finden, mit denen OFETs generell verbessert werden können. Es wird das Ziel verfolgt, sich der maximalen Leistungsfähigkeit eines gegebenen Materialsystems anzunähern. Aufwendige Präparationsstrategien werden für dieses Ziel bewusst in Kauf genommen, auch wenn deshalb vermutlich kein direkter Zugang zu Anwendungen eröffnet wird. An geeigneten Modellsystemen können einzelne wichtige Aspekte, wie die elektronische Struktur an Metallkontakten und im organischen Halbleitervolumen sowie das Wachstum von Schichten und Kristalliten organischer Halbleitermoleküle auf einkristallinen Isolatorsubstraten charakterisiert werden. Die Ergebnisse dieser grundlegenden Experimente fließen in den Aufbau des geplanten OFETs ein. Auf dem Weg zu einem funktionsfähigen Bauelement mit bestmöglichen Eigenschaften wurden wesentliche Fortschritte erzielt. Der erste Schwerpunkt dieser Arbeit ist die Untersuchung elektronischer Niveaus an Metallkontakt-Grenzflächen und im Volumen des Modellsystems PTCDA/Ag(111) mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE). Die 2PPE-Spektren der PTCDA/Ag(111)-Grenzfläche sind dominiert durch einen unbesetzten, parallel zur Grenzfläche stark dispersiven Shockley-artigen Grenzflächenzustand (IS), der sich durch die Chemisorption der Moleküle auf der Ag(111)-Oberfläche bildet. Bei der Untersuchung von intramolekular angeregten elektronischen Zuständen von PTCDA mit 2PPE zeigen sich im Vergleich zum Untergrund der Spektren schwache Signale, die jedoch mit einer geeigneten Beschreibung des Untergrunds davon separiert werden können. Besonders interessant ist in diesem Zusammenhang das LUMO, das bei einer Anregung aus dem HOMO eine um 0,4 eV stärkere energetische Absenkung zeigt, als bei der Anregung aus dem HOMO-1. Dies kann durch die unterschiedlichen exzitonischen Zustände, die bei den Anregungen entstehen, erklärt werden. Neben den metallischen Kontakten ist die Grenzfläche zwischen organischem Halbleiter und Gate-Isolator entscheidend für die Leistungsfähigkeit eines OFETs. Am Beispiel des Wachstums von Diindenoperylen-Molekülen (DIP) auf einkristallinen Al2O3-Substraten wurde die morphologische und strukturelle Ausbildung von organischen Halbleiterschichten mit optischer Mikroskopie und Rasterkraftmikroskopie untersucht. Das Wachstum kann als stark anisotrop charakterisiert werden. Die – im Vergleich zu den Bindungsenergien mit dem Substrat – deutlich größeren Bindungsenergien innerhalb der DIP-(001)-Kristallebenen führen bei Substrattemperaturen von 440 K zu einem Wachstum von aufrecht stehenden Molekülen. Es zeigt sich, dass die während des Wachstums herrschende Substrattemperatur einen entscheidenden Einfluss auf die Morphologie der DIP-Schicht hat. So nimmt die Inselgröße von etwa 200 nm bei 350 K auf über 700 nm bei 450 K zu. Außerdem wird ein Ansteigen der Filmrauheit, besonders ab etwa 430 K, beobachtet, das auf den Übergang zu einem anderen Wachstumsmodus bei diesen Temperaturen hinweist. Bei etwas höheren Temperaturen von etwa 460 K wird das Wachstum von DIP-Kristalliten beobachtet. Dabei können – abhängig von den gewählten Präparationsparametern – drei unterschiedliche Kristallit-Typen unterschieden werden: „Mesa-Kristallite“ mit lateralen Abmessungen von mehreren Mikrometern, „Dendritische Kristallite“, die eine verzweigte Struktur aufweisen, die mithilfe der Wachstumskinetik erklärt werden kann und „Schichtkristallite“, deren Morphologie sich durch teilweise starke Krümmungen auszeichnet. Insgesamt zeigt sich, dass die Morphologie kristalliner Strukturen durch eine feine Balance der Präparationsparameter Substrattemperatur, Aufdampfrate, Substratmorphologie und Substratreinheit bestimmt wird, so dass kleine Änderungen dieser Parameter zu deutlich unterschiedlichen Kristallitformen führen. Schließlich wird das Konzept zum Aufbau eines Hochleistungs-OFET vorgestellt und in Details weiterentwickelt. Fortschritte werden in erster Linie bei der Präparation der Gate-Elektrode erzielt, die unter dem Al2O3-Substrat angebracht werden soll. Für die Ausdünnung des Substrats wird eine Bohrtechnik weiterentwickelt und mit einer nasschemischen Ätzmethode kombiniert, so dass Isolatorstärken von unter 10 µm erreicht werden können. Erste wenige OFETs wurden auf der Basis dieses Substrats präpariert, allerdings ohne dass die Bauteile Feldeffekte zeigten. Verbesserungsmöglichkeiten werden diskutiert. N2 - In this thesis, fundamental aspects of organic semiconductor devices are investigated and incorporated into the construction and optimization of an organic semiconductor field effect transistor (OFET). The knowledge about the maximal performance that organic semiconductors can obtain in OFETs in principle is of particular interest. It enables to refine transport models and to unravel mechanisms and optimization strategies to improve OFETs in general. In order to approach this "high end" of OFETs, elaborate steps to optimize the devices are taken, despite the fact that they might not be feasible in a direct application. Well-characterized model systems are selected to study fundamental properties of devices, in particular the electronic structure at molecule/metal contacts and in the organic semiconductor bulk, as well as the growth of organic semiconductor molecules on single crystalline insulator substrates. The realization of a high performance OFET is pursued by a comprehensive approach in order to optimize particularly the interfaces of the device. Considerable progress is made towards a working OFET with best possible properties. A primary focus of this work, the investigation of the electronic structure at molecule/metal contacts and in the molecular bulk of the model system PTCDA/Ag(111) is performed using two photon photoelectron spectroscopy (2PPE). 2PPE makes it possible to access occupied and unoccupied energy levels and study the dynamics of electronic excitations. The 2PPE spectra of the PTCDA/Ag(111) interface are dominated by an unoccupied and strongly dispersing Shockley-type interface state (IS) that develops due to the chemisorptive interaction of the PTCDA with the metal. Intramolecular excitations of PTCDA with 2PPE show a very small signal compared to the background of the spectra. However, with an appropriate description of the background it is possible to extract information about electronic states. Of special interest is the excitation of the lowest unoccupied molecular orbital (LUMO) that shows different energetic relaxation mechanisms, depending on the origin of excitation. In addition to the importance of the molecule/metal contacts, the performance of OFETs is determined to a large extend by the quality of the organic semiconductor/gate insulator interface where the charge carrier channel is established. For optimal performance, the first layer of molecules should be free of defects and impurities. The morphology and structure of a molecular layer are investigated for diindenoperylene (DIP) molecules, adsorbed on a single crystalline Al2O3 substrate, by atomic force microscopy and optical microscopy. The growth of these molecules is determined by the binding energies, which are strongly anisotropic within the molecular film structure and between molecules and substrate. These anisotropies stimulate the growth of upright standing molecules at substrate temperatures of about 440 K. Dependent on the substrate temperature during growth, the morphology shows grains with lateral dimensions of about 200 nm at 350 K which increase up to 700 nm at 450 K. This change in morphology is accompanied by an increase of roughness, indicating a change of the growth mode, at higher temperatures. At slightly higher temperatures of about 460 K, the growth of crystallites is observed. Depending on the particular preparation parameters, three different types of crystallites develop: mesa crystallites with lateral dimensions up to several microns, dendritic crystallites, characterized by kinetic growth processes, and layered crystallites, that are bent in three dimensions. The morphologies can be explained by the strong anisotropy of the bonding strengths within the DIP crystal structure. To obtain a specific morphology, a subtle balance of the preparation parameters has to be found. Possibilities to utilize the grown crystallites in OFETs are discussed and the mesa type is found to be the most promising. The comprehensive concept for the development of a high performance OFET is introduced and refined in details. Improvements are made especially in the construction of the gate electrode that will be attached beneath the Al2O3 substrate. To thin out the substrate, a drilling technique is improved and combined with wet chemical etching, resulting in gate insulator thicknesses below 10 µm. On the basis of this preparatory work few first OFETs were built. However, no field effect could be measured. As a first step towards the electrical characterization of DIP-OFETs, OFETs based on Silicon-oxide were successfully prepared and characterized. Moreover, present challenges and possible improvements towards a high performance OFET are discussed. KW - Organischer Halbleiter KW - Feldeffekttransistor KW - Diindenoperylen KW - Saphir KW - Ag(111) KW - Zwei-Photonen-Photoelektronenspektroskopie KW - Kraftmikroskopie KW - Photoelektronenspektroskopie KW - Organic Semiconductors KW - 2 Photon Photoemission KW - Thin Films KW - Field Effect Transistor KW - Atomic Force Microscopy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48684 ER - TY - THES A1 - Maier, Florian C. T1 - Spectromicroscopic characterisation of the formation of complex interfaces T1 - Spektromikroskopische Charakterisierung der Bildung komplexer Grenzflächen N2 - Within the framework of this thesis the mechanisms of growth and reorganisation of surfaces within the first few layers were investigated that are the basis for the fabrication of high quality thin films and interfaces. Two model systems, PTCDA/Ag(111) and CdSe/ZnSe quantum dots (QD), were chosen to study such processes in detail and to demonstrate the power and improvements of the aberration corrected spectromicroscope SMART [1] simultaneously. The measurements benefit especially from the enhanced transmission of the microscope and also from its improved resolution. SMART, the first double–aberration corrected instrument of its kind [2], provided comprehensive methods (LEEM/PEEM, μ–LEED, μ–XPS) to study in–situ and in real time the surface reorganisation and to determine morphology, local structure and local chemical composition of the resulting thin film. Complementarily, a commercial AFM [3] was used ex–situ. XPEEM and μ–XPS measurements were made possible by attaching SMART to the high flux density beamline of the soft–X–ray source BESSY–II [4]. PTCDA/Ag(111) – Growth and structure of the first two layers Although PTCDA/Ag(111) is one of the most intensely studied model systems for the growth of organic semiconductor thin films, it still offers new insights into a complex growth behaviour. This study enlightens the temperature dependant influence of morphological features as small as monatomic Ag steps on the growth process of the first two layers. At low temperatures, single Ag steps act as diffusion barriers. But interdiffusion was observed already for the 2nd layer whereas domain boundaries in the 1st PTCDA–layer persist for crystallite growth in the 2nd layer. 1st layer islands are more compact and the more dendritic development of the 2nd layer indicates reduced interaction strength between 2nd and 1st layer. These findings were explained by a model consisting of structural and potential barriers. The second part of the PTCDA study reveals a variety of phases that appears only if at least two layers are deposited. Besides the six known rotational domains of the interface system PTCDA/Ag(111) [5], a further manifold of structures was discovered. It does not only show a surprising striped image contrast, but the 2nd layer also grows in an elongated way along these so–called ’ripples’. The latter show a rather large period and were found in a wide temperature range. Additionally the μ-LEED pattern of such a domain shows a new super–superstructure as well. This phase is explained by a structural model that introduces a rotated, more relaxed domain in the 2nd layer that does not exist in the first layer. Its structural parameters are similar to those of the bulk unitcells of PTCDA. The model is confirmed by the observation of two different rotational domains that grow on top of one single ’substrate’ domain in the 1st layer. The orientations of the ripple phases fit as well to the predictions of the model. The growth direction along the ripples corresponds to the short diagonal of the super–superstructure unitcell with diamond–like shape. CdSe/ZnSe – Inverse structuring by sublimation of an α-Te cap With the second model system the formation of CdSe quantum dots (QD) from strained epi-layers was investigated. In this case the structures do not form during deposition, but rather during sublimation of the so–called ‘ignition cap’. For these pilot experiments not only the process of QD formation itself was of interest, but also the portability of the preparation and the prevention of contaminations. It was found that the α-Se is well suited for capping and the last step of the QD preparation, the sublimation of the α-Te cap, needs a sufficiently high rate in rise of temperature. Subsequently the cap, the process of desorption and the final surface with the quantum structures were investigated in detail. The cap was deposited by the MBE-group in Würzburg as an amorphous Te layer but was found to contain a variety of structures. Holes, cracks, and micro–crystallites within an α-Te matrix were identified. Sublimation of the “ignition cap” was observed in real–time. Thus the discovered cap-structures could be correlated with the newly formed features as, e.g., QDs on the bare CdSe surface. Since CdSe/ZnSe QDs prefer to form in the neighbourhood of the Te μ–crystallites, Te was found to play a major role in their formation process. Different explanations as the impact of Te as a surfactant, an enhanced mobility of adatoms or as stressor nuclei are discussed. The spectromicroscopic characterisation of the CdSe surface with QDs revealed the crystallographic directions. An increased Cd signal of the film was found at positions of former holes. Several possibilities as segregation or surface termination are reviewed, that might explain this slight Cd variation. Therewith, an important step to a detailed understanding of the complex reorganisation process in coating systems could be achieved. N2 - Im Rahmen dieser Arbeit wurden der Schicht– und Grenzflächenpräparation zu Grunde liegende Wachstums– und Reorganisationsmechanismen anhand von zwei Modellsystemen in–situ untersucht. Diese waren auch geeignet, das Potential von SMART [1, 2], dem ersten doppelt aberrationskorrigierten, niederenergetischen Elektronen-Spektromikroskop, in seiner weiter optimierten Version zu demonstrieren. Dabei wurde besonders von der gesteigerten Transmission des Mikroskops, aber auch von der verbesserten Auflösung durch die Aberrationskorrektur profitiert. SMART erlaubt nicht nur Messungen unter UHV–Bedingungen, sondern auch in Echtzeit, wobei zwischen einer Reihe von Methoden (LEEM/PEEM, μ–LEED, μ–XPS) kurzfristig und in–situ gewechselt werden kann. Ergänzt wurden die Messungen mit Hilfe eines kommerziellen AFM [3]. Erst die Installation von SMART an einem Strahlrohr von BESSY–II [4] mit hoher Flussdichte im Bereich der weichen Röntgenstrahlung ermöglichte die XPEEM– und μ–XPS–Messungen. PTCDA/Ag(111) – Wachstum und Struktur der ersten beiden Lagen Das ausgiebig untersuchte Modellsystem PTCDA/Ag(111) sorgt nach wie vor für Überraschungen. So konnte bei den vorgestellten Untersuchungen der Einfluss der Morphologie auf den Wachstumsprozess der ersten beiden Lagen detailliert beobachtet werden. Monoatomare Ag–Stufen fungieren dabei als T–abhängige Diffusionsbarrieren für die PTCDA–Moleküle in der ersten Lage. Hingegen ist die Diffusion von Molekülen der zweiten Lage über Domänengrenzen der ersten Lage hinweg leicht möglich, wenngleich PTCDA–Domänengrenzen der ersten ML auch für Kristallite in der zweiten Lage begrenzend sind. Das unterschiedliche Domänenwachstumsverhalten wird dadurch erklärt, dass die Wechselwirkungsstärke zwischen zweiter und erster Lage gegenüber der zwischen erster Lage und Ag(111) reduziert ist und dass benachbarte Domänen unterschiedliche Struktur aufweisen. Ein zweiter Teilaspekt beleuchtet den Polymorphismus der zweiten Lage PTCDA auf Ag(111). Neuartige Domänen zeigen nicht nur einen ungewöhnlichen, linear variierenden Kontrast, sondern auch anisotropes Wachstum in einem weiten Temperaturbereich, bevorzugt entlang der sogenannten ’Ripple’. Mit μ–LEED wurde die neue kristallographische Über–Überstruktur charakterisiert. Zudem wurden in Dunkelfeld-LEEM zwei unterschiedliche Rotationsdomänen auf einer einzelnen Substratdomäne beobachtet. Die Abmessungen der Einheitszelle der Moleküle in der zweiten Lage ähneln denen der ersten Lage, sind aber gegenüber diesen um unerwartete 75° gedreht. Zur Erklärung dieser Beobachtungen wird ein Strukturmodell vorgeschlagen, das aus zwei unterschiedlichen und daher verspannt gestapelten PTCDA–Domänen besteht. Derartige Domänen wachsen bevorzugt entlang der „Ripples“ und damit entlang der kurzen Diagonalen der vorgeschlagenen Über-Überstruktur auf. Die vorhergesagten Orientierungen der „Ripples“ wurden ebenfalls nachgewiesen. Der linienförmige Kontrast in der zweiten Lage wird durch eine Oszillation des Lagenabstandes erklärt. CdSe/ZnSe – Rückwirkende Strukturbildung durch Sublimation einer α–Te-Deckschicht Weiterhin wurde die Bildung von CdSe-Quantenpunkten (QD) aus verspannten CdSe/ZnSe(001)-Schichten untersucht, die sich bei Sublimation der Te-Schicht reorganisieren. In Pilotexperimenten mit einem Spektromikroskop an CdSe/ZnSe-Heterostrukturen wurden sowohl der Bildungsprozess der Quantenstrukturen selbst detailliert untersucht, als auch die Tauglichkeit des Kontaminationsschutzes sorgfältig verifiziert. Die in-situ Sublimation der mikromorphen Te-Deckschicht, Auslöser für die QD-Bildung, erfordert ausreichend hohe Heizraten. Schrittweise wurden die Deckschicht, der Desorptionsprozess und die resultierende Oberfläche mit den Quantenstrukturen unter die Lupe genommen. Die als α-Te abgeschiedene Kappe weist eine Vielzahl von Strukturen auf, welche als Löcher, Risse und Mikrokristallite in einer α-Te Matrix identifiziert und charakterisiert wurden. Durch die Echtzeitbeobachtung des Desorptionsprozesses konnten die Positionen der Strukturen in der Kappe mit den zurückbleibenden bzw. neu entstehenden Strukturen wie den Quantenpunkten korreliert werden. Aus der relativen Anordnung der Strukturen wird gefolgert, dass die Präsenz von Tellur bei der Bildung der Quantenpunkte eine wichtige Rolle spielt. Verschiedene Erklärungsansätze wie zum Beispiel die Wirkung als „Surfactant“, Erhöhung der Diffusion und spannungsinduzierte Nukleation werden diskutiert. Die LEED-Charakterisierung der QD-besetzten CdSe-Oberfläche erlaubt die Korrelation mit den kristallographischen Richtungen des Substrats. Das XPEEM-signal weist auf Cd–Segregation unter den Löchern hin, lässt aber auch die Deutung als Cd-terminierte Oberflächenrekonstruktion zu. Damit ist ein erster, wichtiger Schritt zur detaillierten Aufklärung des Reorganisationsprozesses des komplexen Schichtsystems bei der Bildung von selbstorganisierten Quantenpunkten gelungen. KW - Halbleiterschicht KW - Wachstumsprozess KW - Spektroskopie KW - Mikroskopische Technik KW - Perylendianhydrid KW - Silber KW - Quantenpunkt KW - Cadmiumselenid KW - Oberflächenanalyse KW - Röntgenspektroskopie KW - Elektronenmikroskopie KW - Semiconductor KW - organic KW - PTCDA KW - Ag(111) KW - anorganic KW - quantum dot KW - CdSe KW - ZnSe KW - CdTe KW - Spectromicroscopy KW - LEEM KW - XPEEM KW - LEED KW - XPS Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65062 ER - TY - THES A1 - Kröger, Ingo T1 - Adsorption von Phthalocyaninen auf Edelmetalloberflächen T1 - Adsorption of phthalocyanines on noble metal surfaces N2 - In dieser Arbeit wurden methodenübergreifend die Adsorbatsysteme CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc/Ag(111) und TiOPc/Ag(111) untersucht und detailliert charakterisiert. Der Schwerpunkt der Experimente lag in der Bestimmung der lateralen geometrischen Strukturen mit hochauflösender Elektronenbeugung (SPA-LEED) und Rastertunnelmikroskopie (STM), sowie der Adsorptionshöhen mit der Methode der stehenden Röntgenwellenfeldern (NIXSW). Hochauflösende Elektronenenergieverlustspektroskopie (HREELS) wurde verwendet, um die vibronische Struktur und den dynamischen Ladungstransfer an der Grenzfläche zu charakterisieren. Die elektronische Struktur und der Ladungstransfer in die Moleküle wurde mit ultraviolett Photoelektronenspektroskopie (UPS) gemessen. Die wichtigsten Ergebnisse dieser Arbeit betreffen den Zusammenhang zwischen Adsorbat-Substrat Wechselwirkung und der Adsorbat-Adsorbat Wechselwirkung von Phthalocyaninen im Submonolagenbereich. N2 - In this thesis the adsorbate systems CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc and TiOPc/Ag(111) were investigated and characterized in great detail using complementary methods. The focus of the experiments was the determination of lateral geometric structures with spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunneling microscopy (STM), as well as the measurement of adsorption heights using the method of normal incidence x-ray standing waves (NIXSW). High resolution electron energy loss spectroscopy (HREELS) was used to characterize the vibronic properties of the molecule and the interface dynamical charge transfer (IDCT). The electronic structure and the charge transfer into the molecule were investigated with ultraviolet photoelectron spectroscopy (UPS). The most important results of this work are related with the interplay between adsorbate-substrate and adsorbate-adsorbate interaction of Phthalocyanines in the submonolayer regime. KW - Oberfläche KW - Edelmetall KW - Phthalocyanin KW - Adsorption KW - Oberflächenphysik KW - Adsorption KW - Phthalocyanine KW - CuPc KW - TiOPc KW - H2Pc KW - Ag(111) KW - Au(111) KW - Cu(111) KW - SPA-LEED KW - NIXSW KW - HREELS KW - STM KW - UPS KW - Paarpotentiale KW - surface science KW - adsorption KW - phthalocyanine KW - CuPc KW - TiOPc KW - H2Pc KW - Ag(111) KW - Au(111) KW - Cu(111) KW - SPA-LEED KW - NIXSW KW - HREELS KW - STM KW - UPS KW - pair potentials Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57225 ER -