TY - THES A1 - Graf, Tilmann T1 - Differentielle Effekte einer PPARgamma-Aktivierung mit Pioglitazon in der Barrettadenokarzinomzelllinie OE33 in vitro und in vivo T1 - Differential effects of PPARgamma activation with pioglitazone on the barrett´s adenocarcinoma cell line OE33 in vitro and in vivo N2 - Der intrazelluläre Hormonrezeptor PPARgamma spielt eine Rolle in vielen Differenzierungsprozessen. Zudem konnte in multiplen malignen Tumoren verschiedenen Ursprungsgewebe gezeigt werden, dass sowohl Proliferation als auch Apoptose beeinflusst werden können und so eine neuartige antiproliferative Therapieoption bestehen könnte. Im Barrettadenokarzinom des distalen Ösophagus, einer malignen Neoplasie auf dem Boden von Magensäure- und Dünndarmsekretreflux, sind diese Zusammenhänge bisher nicht ausreichend untersucht. Ziel dieser Studie sollte eine Untersuchung von Proliferation und Apoptose des Barrettadenokarzinoms unter dem Einfluss von einer PPARgamma-Aktivierung durch den synthetischen Agonisten Pioglitazon sein. Dazu wurden in vitro Zelllinien von Barrettadenokarzinomen und von Plattenepithelkarzinomen sowie humane Barrettgewebeproben auf Expression von PPARgamma untersucht. Zudem wurde nach Stimulation mit Pioglitazon die Wirkung auf Proliferation und Apoptose gemessen. Nach Generierung von soliden Tumoren in immundepletierten balb/c nu/nu Mäusen wurden diese mit Pioglitazon-haltigem Actos® stimuliert und das Tumorwachstum mit einer Kontrollgruppe verglichen. Zudem wurden nach Explantation der Tumore histologisch Apoptose- und Proliferationsverhalten bestimmt. Wir konnten zeigen, dass PPARgamma in humaner Barrettmukosa und in der humanen Barrettadenokarzinomzelllinie OE33 überexprimiert ist. PPARgamma-Aktivierung inhibiert das Wachstum von OE33-Barrett-Adenokarzinomzellen in vitro durch eine Induktion von Apoptose, während das Wachstum von transplantierten Tumoren, die von OE33-Zellen abgeleitet wurden, in vivo durch systemische PPARgamma-Aktivierung auf dem Boden einer gesteigerten Proliferation und einer Hemmung der Apoptose verstärkt wurde. Diese Ergebnisse charakterisieren PPARgamma als einen potentiellen molekularen Mediator, der in die Entwicklung eines Barrettepithels mit Metaplasie aus normalem Plattenepithel in dem gastro-ösophagealen Übergang involviert ist. N2 - Backround&Aims: The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPARgamma) is a key transcription factor regulating a broad spectrum of target genes involved in adipogenesis, glucose homeostasis and cell differentiation. In addition, PPARgamma has been demonstrated to control proliferation and apoptosis in various types of cancer cells. The objective of this study was to characterize the biological effects of PPARgamma activation in Barrett’s esophagus and Barrett’s adenocarcinoma. Methods: PPARgammaexpression was investigated in endoscopic biopsies of the gastroesophageal junction and in Barrett’s epithelium as well as cancer cell lines derived from Barrett’s adenocarcinoma and squamous epithelium cancer of the esophagus by Western blot, fluorescence immunocytochemistry and semiquantitative competitive RT-PCR. Effects of PPARgamma activation by the thiazolidinedione pioglitazone on cell proliferation and apoptosis were assessed in cell culture in vitro and in mice bearing transplantable Barrett´s adenocarcinoma tumors in vivo. Results: PPARgamma mRNA and protein were overexpressed in both Barrett’s epithelium and in the Barrett’s adenocarcinoma derived cell line OE33. PPARgamma activation by pioglitazone induced apoptosis in OE33 cells resulting in reduced tumor growth in vitro. Unexpectedly, enhanced growth of OE33 derived transplantable adenocarcinomas was observed in Balb/c nu/nu mice in vivo upon systemic thiazolidinedione treatment due to increased cell proliferation. Conclusions: PPARgamma seems to be involved in the molecular pathogenesis of Barrett’s epithelium and Barrett’s adenocarcinoma. PPARgamma activation exerts differential effects on growth of Barrett’s adenocarcinoma cells in vitro and after transplantation in vivo emphasizing the importance of cell context specific factors and signal transduction pathways modulating PPARgamma action. KW - Barrett KW - PPARgamma KW - Ösophagus KW - Apoptose KW - Proliferation KW - Barrett KW - PPARgamma KW - esophagus KW - apoptosis KW - proliferation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23497 ER - TY - THES A1 - Wicovsky, Andreas T1 - Die Rolle von TRAF1 und JNK bei der TNF-vermittelten Apoptose T1 - The role of TRAF1 and JNK in TNF-induced apoptosis N2 - TNF (Tumor Nekrose Faktor) vermittelt seine biologischen Funktionen durch Interaktionen mit TNFR1 (TNFRezeptor 1) und TNFR2 (TNFRezeptor 2). In früheren Arbeiten konnte gezeigt werden, dass der TNFR2 sowohl durch die Induktion von membrangebundenem TNF als auch durch die proteasomale Degradation von TRAF2 (TNFRezeptor-assozierter Faktor 2) die TNFR1-vermittelte Apoptose verstärken kann. Des Weiteren war bekannt, dass TRAF1 (TNFRezeptor-assozierter Faktor 1), ein anderes Mitglied der TRAF-Familie, mit TRAF2 Heterotrimere bilden kann und zudem nach TNF-induzierter NFkappaB- (nuclear factor kappaB) Aktivierung verstärkt exprimiert wird. In der vorliegenden Arbeit konnte nun erstmals gezeigt werden, dass TRAF1 in beide TNFR-Signalkomplexe rekrutiert wird und darin in einem TRAF2/TRAF1-Heterotrimer TRAF2 funktionell ersetzen kann. Darüber hinaus verhindert TRAF1 die Rekrutierung von TRAF2 in lipid rafts sowie dessen anschließende proteasomale Degradation. Auf diese Weise kann TRAF1 die TNFR2-abhängige Verstärkung der TNFR1-induzierten Apoptose verhindern. Im zweiten Teil der vorliegenden Arbeit wurde die TNF-vermittelte Aktivierung der JNK (c-Jun N-terminale Kinase), dessen Regulation durch ROS (reactive oxygen species), Caspasen (Cysteinyl-Aspartat-spezifische Proteasen) sowie NFkappaB-induzierte Faktoren untersucht. TNF induziert in den meisten Zellen zunächst nach zehn bis 30 Minuten eine transiente JNK-Aktivierung, woraufhin bei NFkB-inhibierten Zellen eine zweite andauernde JNK-Aktivierung folgt. Die meisten in der Literatur beschriebenen Studien gehen dabei von einem ROS-abhängigen, Caspase-unabhängigen Mechanismus der persistierenden JNK-Aktivierung aus. Des Weiteren wurde in den vor allem bei embryonale Mausfibroblasten durchgeführten Untersuchungen davon ausgegangen, dass bestimmte NFkappaB-induzierte Radikalfänger die andauernde Aktivierung der JNK verhindern. In dieser Arbeit konnte gezeigt werden, dass in den humanen Zelllinien KB, Jurkat und HaCaT die andauernde Aktivierung der JNK, im Gegensatz zur transienten JNK-Aktivierung, Caspase-abhängig verläuft. Es ergab sich überdies, dass die inhibierende Wirkung des NFkB-Signalweges auf die persistierende JNK-Aktivierung in diesen Zelllinien in erster Linie auf die indirekte Verhinderung der Apoptose durch die Induktion von antiapoptotischen Proteinen wie Flip-L (FLICE-inhibitory protein long) und IAPs (inhibitor of apoptosis) zurückzuführen ist, als auf die direkte Expression von Radikalfängern. Zudem wurde in den untersuchten Zelllinien die Caspase-vermittelte Spaltung von MEKK-1 (MAP/ERK kinase kinase-1) und p21WAF/Cip 1 nachgewiesen, von denen bekannt ist, dass die Spaltprodukte eine JNK-stimulierende Wirkung haben. Dennoch müssen künftige Studien zeigen, ob die Spaltung von p21WAF/Cip 1 und MEKK-1 in Fragmente mit JNK–stimulierender Aktivität oder andere Caspasesubstrate für die Caspase-vermittelte andauernde Aktivierung der JNK verantwortlich sind. N2 - TNF (tumor necrosis factor) induces its biological functions by interactions with TNFR1 (TNF receptor 1) and TNFR2 (TNF receptor 2). In recent studies it has been shown that stimulation of TNFR2 results in an enhancement of the TNFR1-induced apoptosis. The reason of this finding is the transcriptional induction of membrane-bound TNF as well as the proteasomal degradation of TRAF2 (TNF receptor associated factor 2). Furthermore it was known that TRAF1 (TNF receptor associated factor 1), those expression is induced by TNF mediated NFkB (nuclear factor kappaB) activation, can interact with TRAF2. In the first part of this thesis it could be demonstrated that TRAF1 co-recruits with TRAF2 to TNFR1 and TNFR2 without affecting the downstream signalling pathways. Moreover, TRAF1 expression inhibits TNFR2 induced recruitment of TRAF2 into lipid rafts and its subsequent depletion. In this manner, TRAF1 abrogates the TNFR2-mediated enhancement of TNFR1-induced apoptosis. In the second part of this thesis the TNF-induced activation of JNK (c-Jun N-terminal kinase) as well as its regulation by ROS (reactive oxygen species), caspases (cysteinyl-aspartat-specific proteases) and NFkB-induced proteins were examined. In most cell types TNF induces a transient activation of the JNK pathway, whereas in NFkB-inhibited cells a second sustained activation of JNK is observed. Based on previous studies, it has been suggested that TNF-induced prolonged JNK activation is predominantly mediated by ROS. Moreover, in some studies based on mouse embryonal fibroblasts it has been suggested that expression of NFkB-induced antioxidants prevents prolonged JNK activation upon TNF stimulation. In this thesis it could be shown in various human cellular systems, including KB, Jurkat and HaCaT, that TNF-induced prolonged activation of JNK is in contrast to the transient activation mediated by caspases. Furthermore, it was demonstrated that NFkB induction inhibits the TNF-induced prolonged JNK activation indirectly by inhibiting apoptosis rather than directly by expression of antioxidants. In addition, caspase-dependent cleavage of MEKK-1 (MAP/ERK kinase kinase-1) and p21WAF/Cip 1 was found in these cellular systems. As it is known from previous studies, cleavage of these proteins results in fragments with high JNK-stimulating activity, these caspase substrates could therefore play an important role in TNF-induced prolonged JNK-activation. However, further studies have to evaluate if the cleavage of MEKK-1 and p21WAF/Cip 1 or other caspase substrates mediates the TNF-induced caspase-dependent prolonged JNK-activation. KW - JNK KW - TRAF1 KW - TNF KW - Apoptose KW - JNK KW - TRAF1 KW - TNF KW - apoptosis Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23689 ER -