TY - JOUR A1 - Fuchs, Konrad F. A1 - Eden, Lars A1 - Gilbert, Fabian A1 - Bernuth, Silvia A1 - Wurmb, Thomas A1 - Meffert, Rainer H. A1 - Jordan, Martin C. T1 - Führt eine COVID-19-bedingte Ausgangsbeschränkung zu einer Reduktion schwer verletzter Patienten an einem überregionalen Traumazentrum? JF - Der Unfallchirurg N2 - Hintergrund Intensiv- und Beatmungskapazitäten sind für die Behandlung COVID-19-erkrankter Patienten essenziell. Unabhängig davon beanspruchen auch schwer verletzte Patienten häufig Intensiv- und Beatmungskapazitäten. Daraus ergibt sich folgende Fragestellung: Führt eine Ausgangsbeschränkung zu einer Reduktion schwer verletzter Patienten, und kann hierdurch mit frei werdenden Intensivkapazitäten gerechnet werden? Material und Methoden Es erfolgte eine retrospektive Auswertung schwer verletzter Patienten mit einem Injury Severity Score (ISS) ≥16 zwischen dem 17.03.2020 und 30.04.2020 (landesweiter Shutdown) an einem überregionalen Traumazentrum. Erfasst wurden der Unfallmechanismus, ISS, Versicherungsträger (BG vs. GKV/PKV), ob es sich um einen dokumentierten Suizidversuch handelte, und ob eine operative Intervention innerhalb der ersten 24 h erforderlich war. Als Kontrollgruppe wurden die Daten des gleichen Zeitraums der Jahre 2018 und 2019 ausgewertet. Ergebnisse Es konnte keine wesentliche Veränderung bezüglich der Anzahl an schwer verletzten Patienten festgestellt werden (2018 n = 30, 2019 n = 23, 2020 n = 27). Es zeigten sich insgesamt keine deutlichen Veränderungen der absoluten Zahlen bezüglich der Intensivpflichtigkeit in den ersten 24 h und der Beatmungspflichtigkeit beim Verlassen des Schockraums. Die Anzahl an Patienten, die eine Operation innerhalb der ersten 24 h nach Eintreffen im Schockraum benötigten, war 2020 sogar leicht erhöht, jedoch nicht statistisch signifikant. Der durchschnittliche ISS blieb konstant. Bezüglich der Unfallursache zeigte sich 2020 kein Motorradfahrer, der einen nicht berufsgenossenschaftlich versicherten Unfall erlitt (2018 n = 5, 2019 n = 4, 2020 n = 0). Es wurde 2020 ein erhöhter Anteil an Arbeitsunfällen mit einem ISS ≥16 festgestellt (2018: 10 %, 2019: 26,1 %, 2020: 44,4 %). Diskussion Eine Ausgangsbeschränkung führte zu keiner Reduktion verletzter- und intensivpflichtiger Patienten am untersuchten Zentrum. Auch unter einer landesweiten Ausgangsbeschränkung muss für dieses Patientenkollektiv eine ausreichende Menge an Intensiv- und OP-Kapazitäten vorgehalten werden. Die Bestätigung dieser Ergebnisse durch Auswertung nationaler Register steht noch aus. KW - Pandemie KW - Intensivkapazitäten KW - Coronavirus KW - Injury Severity Score KW - Polytrauma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265268 VL - 124 IS - 5 ER - TY - JOUR A1 - Leschzyk, Dinah T1 - Corona-Kommunikation. Wie Jair Bolsonaro die Wissenschaft diskreditiert und Verschwörungstheorien befeuert JF - promptus - Würzburger Beiträge zur Romanistik N2 - This article deals with discursive and argumentative strategies used by Brazilian President Jair Bolsonaro to bring science in discredit during the 2020’s COVID-19-pandemic. Based on official statements and Tweets launched over the crisis the Discourse-Historical Approach is applied to make strategies brought into play by Bolsonaro visible. While the President declares scientific advice such as distancing and quarantine as ineffective, he recommends the use of hydroxychloroquine as well as old fashioned prayers for staying safe and healthy. He evokes that there are «fake news» and «partners of paralysis», to which he responds by demasking and bringing the one and only truth towards «the people». The analysis points out that Bolsonaro is downplaying the virus and the risk of transmission and puts the economy ahead of health. His supporters as a consequence tend to ignore the WHO recommendations how to behave during the pandemic. KW - COVID-19 KW - Coronavirus KW - Jair Bolsonaro KW - anti-science KW - discursive strategy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244271 VL - 6 ER - TY - JOUR A1 - Fuchs, Konrad F. A1 - Eden, Lars A1 - Gilbert, Fabian A1 - Bernuth, Silvia A1 - Wurmb, Thomas A1 - Meffert, Rainer H. A1 - Jordan, Martin C. T1 - Führt eine COVID-19 bedingte Ausgangsbeschränkung zu einer Reduktion schwerverletzter Patienten an einem überregionalen Traumazentrum? T1 - Do COVID-19 restrictions lead to a decrease in severely injured patients at a level 1 trauma center in Germany? JF - Der Unfallchirurg N2 - Hintergrund Intensiv- und Beatmungskapazitäten sind für die Behandlung COVID-19-erkrankter Patienten essenziell. Unabhängig davon beanspruchen auch schwer verletzte Patienten häufig Intensiv- und Beatmungskapazitäten. Daraus ergibt sich folgende Fragestellung: Führt eine Ausgangsbeschränkung zu einer Reduktion schwer verletzter Patienten, und kann hierdurch mit frei werdenden Intensivkapazitäten gerechnet werden? Material und Methoden Es erfolgte eine retrospektive Auswertung schwer verletzter Patienten mit einem Injury Severity Score (ISS) ≥16 zwischen dem 17.03.2020 und 30.04.2020 (landesweiter Shutdown) an einem überregionalen Traumazentrum. Erfasst wurden der Unfallmechanismus, ISS, Versicherungsträger (BG vs. GKV/PKV), ob es sich um einen dokumentierten Suizidversuch handelte, und ob eine operative Intervention innerhalb der ersten 24 h erforderlich war. Als Kontrollgruppe wurden die Daten des gleichen Zeitraums der Jahre 2018 und 2019 ausgewertet. Ergebnisse Es konnte keine wesentliche Veränderung bezüglich der Anzahl an schwer verletzten Patienten festgestellt werden (2018 n = 30, 2019 n = 23, 2020 n = 27). Es zeigten sich insgesamt keine deutlichen Veränderungen der absoluten Zahlen bezüglich der Intensivpflichtigkeit in den ersten 24 h und der Beatmungspflichtigkeit beim Verlassen des Schockraums. Die Anzahl an Patienten, die eine Operation innerhalb der ersten 24 h nach Eintreffen im Schockraum benötigten, war 2020 sogar leicht erhöht, jedoch nicht statistisch signifikant. Der durchschnittliche ISS blieb konstant. Bezüglich der Unfallursache zeigte sich 2020 kein Motorradfahrer, der einen nicht berufsgenossenschaftlich versicherten Unfall erlitt (2018 n = 5, 2019 n = 4, 2020 n = 0). Es wurde 2020 ein erhöhter Anteil an Arbeitsunfällen mit einem ISS ≥16 festgestellt (2018: 10 %, 2019: 26,1 %, 2020: 44,4 %). Diskussion Eine Ausgangsbeschränkung führte zu keiner Reduktion verletzter- und intensivpflichtiger Patienten am untersuchten Zentrum. Auch unter einer landesweiten Ausgangsbeschränkung muss für dieses Patientenkollektiv eine ausreichende Menge an Intensiv- und OP-Kapazitäten vorgehalten werden. Die Bestätigung dieser Ergebnisse durch Auswertung nationaler Register steht noch aus. N2 - Background Intensive care and ventilator capacities are essential for treatment of COVID-19 patients. Severely injured patients are often in continuous need of intensive care and ventilator treatment. The question arises, whether restrictions related to COVID-19 have led to a decrease in severely injured patients and thus to an increase in intensive care unit (ICU) capacity. Material and methods A retrospective analysis of all seriously injured patients with an injury severity score (ISS) ≥16 was performed between 17 March and 30 April 2020 at a level 1 trauma center in Germany. The mechanism of injury and the ISS were recorded. Further data were collected as to whether it was a work-related accident, a documented suicide attempt and if surgery was necessary in the first 24 h after arrival in hospital. Data from 2018 and 2019 served as a control group. Results There was no substantial difference in the total number of seriously injured patients (2018 n = 30, 2019 n = 23, 2020 n = 27). Furthermore, there was no relevant difference in the number of patients needing intensive care or ventilator treatment when leaving the shock room. The number of patients needing an operative intervention within the first 24 h after arriving at hospital was slightly higher in 2020. The mean ISS was at a constant level during all 3 years. In 2020 there was no polytraumatized motorbike rider, who did not have a work-related accident (2018 n = 5, 2019 n = 4, 2020 n = 0). A noticeable increase in work-related accidents was observed (2018: 10%, 2019: 26.1%, 2020 44.4%). Discussion Restrictions related to COVID-19 did not lead to a reduction in seriously injured patients needing ICU care. Due to the monocentric data analysis there is room for misinterpretation. In general, intensive care and operating capacities should be managed with adequate consideration for seriously injured patients even in times of crisis, such as the COVID-19 pandemic. Confirmation through the German Trauma Register is pending. KW - Intensivkapazitäten KW - Coronavirus KW - Injury Severity Score KW - Polytrauma KW - Pandemie KW - ICU capacities KW - Corona virus KW - injury severity score KW - polytrauma KW - pandemic Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232547 SN - 0177-5537 VL - 124 ER - TY - THES A1 - Stempka, Martin T1 - Expression und Reinigung der SARS-Coronavirus-Mpro und deren Co-Kristallisation mit spezifischen Inhibitoren T1 - Expression and purification of the SARS coronavirus mpro and its co-crystallization with specific inhibitors N2 - Bei SARS („Schweres akutes respiratorisches Syndrom“) handelt es sich um eine Infektionskrankheit des Menschen, welche im November 2002 erstmalig auftrat. Als Erreger dieser Krankheit wurde das SARS-assoziierte Coronavirus identifiziert. Dessen viruseigene Reproduktionsmaschinerie wird vor allem durch die katalytische Aktivität einer Cysteinprotease, der SARS-Coronavirus-Hauptprotease (SARS-CoV-Mpro), und die damit verbundene Prozessierung von viralen Polyproteinen, aufrechterhalten. Diese Schlüsselfunktion der SARS-CoV-Mpro macht sie zu einem vielversprechenden Zielobjekt bei der Entwicklung von spezifischen Inhibitoren für diese Protease, welche somit eine Vermehrung des Virus verhindern. In dieser Arbeit wurde die SARS-CoV-Mpro mit optimierten Methoden exprimiert und gereinigt. Mit der Methode der ESI-MS-Analyse konnte ein kovalentes, irreversibles Bindungsverhalten verschiedener Inhibitoren gezeigt werden und erstmals auch die Bindung von Fragmenten von Inhibitormolekülen an die Protease. So zeigten die SARS-CoV-Mpro-Inhibitoren MH211A und UK-VI-1g eine kovalente Bindung des kompletten Moleküls pro Enzym-Monomer: überraschenderweise hatten bis zu vier Moleküle MH211A bzw. zwei Moleküle UK-VI-1g an ein Proteasemolekül gebunden. Die Bindung von UK-VI-1g an die Protease wurde an zwei Peptiden im Bereich von den Aminosäuren 62 bis 76 bzw. 280 bis 298 nachgewiesen, wobei beide nicht in der Nähe der active site lokalisiert sind. Im Falle des Inhibitors Lit1 bindet der 2,6-Dinitro-4-trifluoromethyl-phenyl-Rest, bei TS48 das Zimtsäure-Thioester-Fragment kovalent an jedes Monomer im dimeren Enzym. Die SARS-CoV-Mpro wurde erstmals ohne Abtrennung des C-terminalen His-tag mit spezifischen Inhibitoren co-kristallisiert. Drei mögliche Orientierungen des Inhibitors TS174 wurden in der active site der Protease identifiziert. Aufgrund der schwachen Elektronendichte des Inhibitors konnten diese nicht weiter untersucht werden. Das Iod-Isatin-Derivat IISBT wurde ebenfalls mit der SARS-CoV-Mpro zusammen co-kristallisiert und es konnte erstmalig eine kovalente Bindung eines Isatin-Derivats an die SARS-CoV-Mpro anhand einer Röntgenstruktur klar gezeigt werden. Diese Struktur zeigte dann, dass früher veröffentlichte molekulare docking-Studien, die eine nicht-kovalente Bindung von IISBT und anderen Isatin-Derivaten veranschaulichen, nochmal überdacht werden sollten. Basierend auf einer ESI-MS-Analyse und früheren Ergebnissen von MALDI- und Dialyse-Experimenten, kann man sicher annehmen, dass IISBT in einer kombinierten kovalent-reversiblen Art und Weise an die SARS-CoV-Mpro bindet. N2 - SARS („severe acute respiratory syndrome”), a respiratory disease in humans, appeared in November 2002 for the first time. The causative agent of this disease is the SARS-associated coronavirus. Its replication machinery is maintained by the catalytic activity of a cysteine protease, named SARS coronavirus main protease (SARS-CoV-Mpro) that processes the virus derived polyproteins. Based on this key role the SARS-CoV-Mpro is an attractive target for the development of specific inhibitors against this protease thereby inhibiting the reproduction of the virus. In this work, the SARS-CoV-Mpro was expressed and purified by optimized methods. Through ESI-MS analysis an irreversible covalent interaction of various inhibitors was detected but also for the first time the binding of fragments of the inhibitors to the protease. Accordingly the SARS-CoV-Mpro inhibitors MH211A and UK-VI-1g displayed a covalent binding of the complete molecule to the enzyme monomer: surprisingly up to four molecules of MH211A and two molecules of UK-VI-1g respectively bound to one protease molecule. The interaction of UK-VI-1g with the protease was detected for two peptides ranging from amino acids 62 to 76 and 280 to 298 both of which are not located near the active site. In case of inhibitor Lit1 the 2,5-dinitro-4-trifluormethlphenyl-fragment and in TS48 the cinnamic acid-thioester-fragment binds covalently to each monomer in the dimeric enzyme. For the first time the SARS-CoV-Mpro was co-crystallized with specific inhibitors without cleaving the C-terminal His-tag. Three possible orientations of the inhibitor TS174 were identified in the active site of the protease. They could not be further resolved due to the weak electron density for the inhibitor. The iodoisatin derivative IISBT was co-crystallized with SARS-CoV-Mpro as well and a covalent binding mechanism of an isatin derivative to the SARS-CoV-Mpro was clearly shown for the first time in an X-ray structure. This structure then indicates that the previously published molecular docking studies demonstrating a noncovalent binding mode of IISBT and other isatin derivatives should be reconsidered. Based on an ESI-MS analysis and previous results of MALDI and dialysis experiments it is safe to assume that IISBT binds to the SARS-CoV-Mpro in a combined covalent reversible manner. KW - SARS KW - Kristallisation KW - Proteaseinhibitor KW - ESI-MS KW - Coronavirus KW - SARS KW - protease inhibitor KW - crystallization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57083 ER - TY - THES A1 - Hertzig, Tobias T1 - Funktionelle Charakterisierung des coronaviralen Replikationskomplexes T1 - Functional characterisation of the coronaviral replication complex N2 - Coronaviren besitzen mit etwa 30 kb das größte Genom aller bisher bekannten RNA-Viren. Die Synthese der subgenomischen RNAs findet durch einen einzigartigen Mechanismus, die sog. diskontinuierliche Transkription, statt. Diese beiden Besonderheiten erfordern einen leistungsfähigen Replikationskomplex, der sich aus den Prozessierungsprodukten der Polyproteine 1a und 1ab und einigen zellulären Proteinen zusammensetzt. Die Aktivitäten und die Expression der beteiligten Proteine werden auf co- und posttranslationeller Ebene reguliert. Dazu gehört eine ribosomale Leserasterverschiebung, die das Verhältnis zwischen den ORF1aund ORF1b-kodierten Proteinen festlegt, sowie eine umfangreiche proteolytische Prozessierung durch virale Proteasen. Während die hochkonservierten ORF1b-kodierten Proteine vor allem RNA-synthetisierende und -prozessierende Funktionen besitzen, übernehmen die weniger konservierten ORF1a-kodierten Proteine vor allem organisierende oder regulierende Funktionen. So sind sie beispielsweise maßgeblich an der intrazellulären Lokalisation, strukturellen Organisation und proteolytischen Regulation des Replikationskomplexes beteiligt und haben darüber hinaus nichtessentielle Aufgaben, die möglicherweise bei spezifischen Interaktionen des Virus mit seinem Wirt von Bedeutung sind. Die meisten der bisher charakterisierten ORF1bkodierten Proteine besitzen essentielle Enzymfunktionen im viralen RNA-Metabolismus. Einige dieser Enzyme, wie die NendoU oder ExoN, sind spezifisch für die Nidovirales oder nur bestimmte Nidovirusfamilien. In der vorliegenden Arbeit wurde mittels eines revers-genetischen Ansatzes versucht, die Funktion und Bedeutung verschiedener viraler Proteine im Replikationszyklus von HCoV-229E zu untersuchen. Dazu wurden Transkripte von HCoV-229E-cDNAs genomischer Länge, in die entsprechende Substitutionen eingeführt worden waren, in Zellen transfiziert und anschließend analysiert, inwieweit eine virale RNA-Synthese stattfand. Sofern sich infektiöse Viren im Zellkulturüberstand befanden, wurde diese näher charakterisiert, insbesondere um mögliche Defekte in der Virusreplikation und Veränderungen in der Sequenz zu identifizieren. Es wurde gezeigt, dass die Nichtstrukturproteine 13, 14, 15 und 16 wichtige Funktionen innerhalb der viralen RNA-Synthese besitzen, wobei die Aktivitäten von nsp13 und nsp16 essentiell waren. Als besonders kritisch erwiesen sich auch die zinkbindenden Reste der Nterminalen Subdomäne (ZBD) des Nichtstrukturproteins 13. Das Nichtstrukturprotein 14 besitzt ebenfalls eine zentrale Rolle innerhalb der viralen RNA-Synthese und scheint darüber hinaus an der Synthese der subgenomischen RNAs beteiligt zu sein. Die Bedeutung von nsp15 für die Lebensfähigkeit von HCoV-229E konnte anhand entsprechender Mutanten zweifelsfrei nachgewiesen werden, wobei die maßgeblichen Defekte wohl nicht ausschießlich in der RNASynthese, sondern eher in einem späteren Schritt des Replikationszyklus zu suchen sind. Mittels verschiedener Mutanten, die Substitutionen an Spaltstellen der MPRO trugen, konnte die essentielle Bedeutung der posttranslationellen Regulation der Replikaseaktivität durch die Hauptprotease gezeigt werden. In den allermeisten Fällen führten Mutationen, die die Spaltungseffizienz reduzierten, zu einem Abfall in der RNA-Synthese und lebensfähige Viren konnten nicht isoliert werden. Im Rahmen dieser Arbeit wurde ein Replikon auf der Basis des HCoV-229E hergestellt, das über Monate in Zellkultur gehalten und dessen Reportergenexpression durch Fluoreszenz- Mikroskopie beobachtet werden konnte. Es zeigte sich, dass für eine dauerhafte Koexistenz von Wirtszelle und Replikon-RNA nur wenige Veränderungen im viralen Genom notwendig waren. Mit Hilfe eines mutierten Derivats dieses Replikons gelang es, den Defekt einer viralen nsp15- Mutante näher zu charakterisieren. Der Hauptteil der Arbeit widmete sich der Charakterisierung von chimären HCoV-229E-Klonen, deren Nichtstrukturproteine 7 und 8 bzw. 7 bis 9 gegen die entsprechenden Proteine des HCoVNL63 ausgetauscht wurden. Es konnte gezeigt werden, dass die Nichtstrukturproteine 7 und 8 von derselben Spezies stammen müssen, damit RNA-Synthese stattfindet, was auf eine essentielle Interaktion zwischen diesen beiden Proteinen schließen ließ. Die Identifizierung und Analyse adaptiver Mutationen in allen hier untersuchten chimären Klonen zeigte, dass offenbar neben der nsp7-nsp8-Interaktion noch weitere Interaktionen dieser Proteine mit anderen Proteinen, wie zum Beispiel nsp12 und nsp13, auf funktioneller und/oder struktureller Ebene von Bedeutung sind. Darüber hinaus ließen eine Reihe von Mutationen im Bereich des Leserasterverschiebungselements darauf schließen, dass sich bei diesen Viren die Leserasterverschiebungsrate geändert haben könnte. Diese Hypothese konnte durch In-vitro- Translationsexperimente bestätigt werden. Es zeigte sich, dass durch diese Mutationen die Leserasterverschiebungsrate von 50 % in der wildtypischen Situation auf 65 - 70 % angehoben wurde. Diese relative Überexpression von ORF1b-Proteinen scheint zur Kompensation funktioneller Defekte, die durch die Fremdproteine nsp7 und nsp8 verursacht wurden, beizutragen. Obwohl bei den meisten chimären Klonen eine RNA-Synthese auf nahezu wildtypischem Niveau beobachtet werden konnte, wiesen Reduktionen im Virustiter um 60 - 90 % auf verbliebene funktionelle Defekte im Replikationszyklus dieser Viren hin. N2 - With genome sizes of about 30 kb, coronaviruses have the largest genomes of all known RNA viruses. The synthesis of subgenomic RNAs employs a unique mechanism called discontinuous transcription. These two specific features require a powerful replication complex which is comprised of the proteolytic processing products of the polyproteins 1a and 1ab and several cellular proteins. The activities and the expression of the viral proteins are co- and posttranslationally regulated. This regulation involves ribosomal frameshifting, which determines the molar ratio between ORF1a- and ORF1b-encoded proteins, as well as extensive proteolytic processing by viral proteases. The highly conserved proteins encoded by ORF1b are mainly associated with RNA synthesis and RNA processing functions, whereas the less conserved proteins encoded by ORF1a generally serve structural and regulatory functions. Thus, for example, they play a key role in the intracellular localization, structural organization and proteolytic regulation of the replication complex. Furthermore, they mediate nonessential functions, which might be involved in specific virus-host interactions. Most of the previously characterized ORF1b-encoded proteins have essential enzymatic functions in viral RNA metabolism. Some of these enzymes, e.g. NendoU and ExoN, are only conserved in the Nidovirales or specific nidovirus families . In this study, the functions and biological roles of several viral proteins in the replication cycle of HCoV-229E were studied using a reverse-genetics approach. For this purpose, in vitro transcripts carrying specific mutations, which were produced from genome-length HCoV-229EcDNAs, were transfected into cells and viral RNA synthesis was analyzed. If infectious virus was present in the tissue culture supernatant, it was studied in more detail to identify potential growth defects as well as mutations. The study revealed that nonstructural proteins 13 to 16 have important functions in viral RNA synthesis, with the activities of nsp13 and nsp16 being essential. Thus, for example, the study demonstrates the critical importance of the N-terminal zinc-binding residues of nsp13. Furthermore, nsp14 was shown to be involved in viral RNA replication and, most likely, in a specific step in subgenomic RNA synthesis. Furthermore, it was established that the activity of nsp15 is required for viral reproduction. The major defects observed for HCoV-229E nsp15 mutants appeared to be mainly associated with a late step in the viral life cycle rather than viral RNA synthesis itself. Using a set of mutants with MPRO cleavage site substitutions, the essential importance of the MPRO-mediated posttranslational regulation of the replicase activity was demonstrated. In most cases, mutations that reduced the cleavage efficiency at specific MPRO cleavage sites caused a decline of RNA synthesis and viable viruses could not be isolated. In this study, a replicon that was based on HCoV-229E was generated. The replicon could be propagated in cultured cells over several months and the expression of a reporter gene could be monitored by fluorescence microscopy. The data showed that the replicon RNA only acquired a very small number of mutations to be able to coexist with its host cell. Using a mutant derivative of the replicon RNA, the functional defect that had previously been observed in an HCoV-229E nsp15 mutant was further characterized. The main focus of the study was the characterization of chimeric HCoV-229E isolates, whose nonstructural proteins 7 and 8 or 7 to 9 were substituted with the corresponding proteins from HCoV-NL63. The data revealed that only nonstructural proteins 7 and 8 that were derived from the same species were capable of initiating RNA synthesis, indicating critical interactions between these two proteins. The identification and analysis of adaptive mutations that all these chimeric viruses acquired after repeated passaging in tissue culture strongly suggests that, besides interactions between nsp7 and nsp8, the two proteins are engaged in additional structural and/or functional interactions with other proteins, particularly with nsp12 and nsp13. Furthermore, mutations close to the ribosomal frameshift element were identified, suggesting that the frameshift efficiency may have been changed in these viruses. This hypothesis was supported by in vitro translation data, which showed that these mutations increased the frameshifting rate from 50 % in the wild-type situation to about 65 – 70 %. It seems reasonable to suggest that the resulting relative overexpression of ORF1b-encoded proteins compensates some of the functional defects caused by the HCoV-NL63 nonstructural proteins 7 and 8. Even though most of these chimeric viruses synthesized RNAs at near wild-type levels, reduced virus titers by 60 – 90 % suggest that, despite the acquisition of adaptive mutations, functional defects had remained in these viruses. KW - Coronaviren KW - Replikation KW - Coronavirus KW - HCoV-229E KW - Replikationskomplex KW - reverse Genetik KW - Coronavirus KW - HCoV-229E KW - replication complex KW - reverse genetics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20152 ER - TY - THES A1 - Putics, Akos T1 - Enzymatische Aktivitäten des coronaviralen nichtstrukturellen Proteins 3 T1 - Enzymatic activities of coronaviral non-structural protein 3 N2 - Coronaviren können sowohl den Menschen als auch zahlreiche Tierspezies infizieren und verursachen vor allem respiratorische und enterale Erkrankungen. Die Replikation des etwa 27-32 kb großen, einzelsträngigen RNA-Genoms positiver Polarität und die Synthese zahlreicher subgenomischer RNAs erfolgt durch einen Multi-Enzym-Komplex, der bis zu 16 virale nichtstrukturelle Proteine (nsp) und einige zelluläre Proteine umfaßt. Die einzelnen nichtstrukturellen Proteine werden durch proteolytische Prozessierung der vom Replikasegen kodierten Vorläufer-Polyproteine (pp1a/pp1ab) unter Beteiligung viraler Proteasen freigesetzt. Das größte replikative Protein, nsp3, befindet sich im aminoterminalen Bereich der Polyproteine pp1a/pp1ab. Trotz des geringen Konservierungsgrades dieser Region wurden bestimmte funktionelle Domänen, die in allen coronaviralen nsp3 konserviert sind, identifiziert. Dazu gehören: eine saure Domäne, zwei Papain-ähnliche Proteasen (PL1pro und PL2pro) sowie zwei weitere konservierte Domänen (X- bzw. Y-Domäne). Frühere Studien konzentrierten sich vor allem auf die PLpro-Domänen, während die Funktionen der anderen nsp3-Domänen bisher nicht untersucht wurden. Um weitere Einblicke in die nsp3-vermittelten Aktivitäten und ihre Funktionen im coronaviralen Lebenszyklus zu gewinnen, wurden im Rahmen dieser Arbeit die enzymatischen Aktivitäten von zwei nsp3-Domänen, PLpro und X, näher charakterisiert. Coronavirale Papain-ähnliche Proteasen spalten den aminoproximalen Bereich der Polyproteine pp1a/pp1ab und sind somit an der Freisetzung von nsp1, nsp2 und nsp3 beteiligt. In der vorliegenden Arbeit wurde die durch die PLpro vermittelte proteolytische Prozessierung des N-terminalen Endes von nsp3 bei TGEV und SARS-CoV analysiert. Übereinstimmend mit früheren Vorhersagen ergaben In-vitro-Translationsexperimente und Proteinsequenzierungen, dass die TGEV-PL1pro die Peptidbindung zwischen Gly879 und Gly880 spaltet, wodurch das aminoterminale Ende von nsp3 bzw. das carboxyterminale Ende von nsp2 freigesetzt werden. Diese Schnittstelle entpricht bei SARS-CoV der Sequenz Gly818|Ala819, die jedoch bei diesem Virus von der PL2pro prozessiert wird. Mutationsanalysen ergaben weiterhin, dass die Reste Cys1093 (TGEV-PL1pro) und Cys1651 (SARS-CoV-PL2pro) für die proteolytische Aktivität essentiell sind. Diese Daten stützen Vorhersagen zu möglichen katalytischen (nukleophilen) Funktionen dieser beiden Reste. Darüber hinaus wurde das stromaufwärts gelegene nsp2 in TGEV-infizierten Zellen identifiziert. Diese Daten, zusammen mit vorherigen Studien, legen den Schluss nahe, dass die Coronavirus-PLpro-vermittelte proteolytische Prozessierung –trotz der geringen Konservierung des Polyproteinsubstrates und bestehender Unterschiede hinsichtlich der Anzahl konservierter PLpro-Domänen– weitgehend konserviert ist. Im zweiten Teil der Arbeit sollte die enzymatische Aktivität einer weiteren konservierten Domäne im coronaviralen nsp3, der sogenannten X-Domäne, untersucht werden. Für diese Domäne war eine ADP-Ribose-1"-Monophosphatase-Aktivität (Appr-1"-pase) vorhergesagt worden. Um die Eigenschaften dieser Proteine näher zu bestimmen und möglicherweise existierende Gemeinsamkeiten zwischen coronaviralen Enzymen, die den viralen Lebenszyklus steuern und/oder kontrollieren, zu identifizieren, wurden die X-Domänen von drei verschiedenen Coronaviren, HCoV-229E, TGEV und SARS-CoV, die unterschiedlichen serologischen Coronavirus-Gruppen angehören, in vitro untersucht und miteinander verglichen. Es konnte gezeigt werden, dass bakteriell (E.coli-) exprimierte X-Domänen aller drei untersuchten Viren ADP-Ribose-1"-Phosphat, ein Nebenprodukt des zellulären tRNA-Splicings, zu ADP-Ribose dephosphorylieren können. Diese Daten beweisen zweifelsfrei die Appr-1"-pase-Aktivität coronaviraler X-Domänen und lassen vermuten, dass diese Aktivität bei allen Coronaviren konserviert ist. Weitere Untersuchungen zur Substratspezifität und zu möglichen katalytischen Resten des Enzyms wurden mit Hilfe bakteriell exprimierter, mutierter Formen der HCoV-229E-X-Domäne durchgeführt. Die gewonnenen Daten legen die Vermutung nahe, dass die Phosphohydrolaseaktivität hochspezifisch für das Substrat Appr-1"-p ist und die HCoV-229E-pp1a/pp1ab-Reste Asn1302, Asn1305, His1310, Gly1312 und Gly1313 an der Ausbildung des aktiven Zentrum des Enzyms beteiligt sind. Abschließend wurde die Funktion der Appr-1"-pase-Aktivität mit Hilfe einer HCoV-229E-Mutante, in der die Appr-1"-pase-Aktivität durch ortsspezifische Mutagenese ausgeschaltet wurde, in Zellkultur analysiert. Überraschenderweise hatte die Mutation keine nachweisbare Auswirkung auf die virale RNA-Synthese oder den Virustiter, und sie erwies sich auch nach sechs Passagen in Zellkultur als stabil. Die Tatsache, dass die Appr-1"-pase-Aktivität für die Replikation und Transkription von HCoV-229E entbehrlich ist, zeigt, dass Coronavirus-Replikasegene auch nichtessentielle Funktionen kodieren, die möglicherweise akzessorische und/oder regulatorische Funktionen besitzen und nur unter bestimmten Bedingungen (z.B. im infizierten Wirt) einen Selektionsvorteil bieten bzw. essentiell sind. Weitere Studien sind erforderlich, um die biologische Funktion der X-Domäne im Detail zu bestimmen. N2 - Coronaviruses infect humans and a broad range of animal spezies and are mainly associated with respiratory and enteric diseases. Replication of the single-stranded, positive-sense RNA genome of 27-32 kb and production of an extensive set of subgenome-length RNAs (viral transcription) are mediated by a huge multienzyme complex which contains several cellular proteins and up to 16 viral nonstructural proteins (nsp) that are released by viral proteases from the replicase gene-encoded polyprotein precursors, pp1a and pp1ab. The largest coronaviral replicative processing product, nsp3, resides in the N-terminal part of polyproteins pp1a and pp1ab. Despite the generally low conservation of this protein among coronaviruses, several domains could be identified in nsp3 that are conserved in all coronaviruses. These include an acidic domain, one or two papain-like proteases (PL1pro and PL2pro), and two additional domains designated X and Y. Previous studies on nsp3 focused mainly on the characterisation of the PLpro activities while the functions of other nsp3-domains have not been addressed in any detail. To gain more insight into nsp3-encoded activities and their functions in the coronaviral life cycle, two nsp3-associated enzymatic activities, PLpro and X, were characterized in this work. Coronaviral papain-like proteases process the N-proximal part of polyproteins pp1a/pp1ab, thus producing nsp1, nsp2 and nsp3. In this study, the PLpro-mediated cleavage at the N-terminal end of nsp3 was analyzed for TGEV and SARS-CoV. Consistent with previous predictions, in vitro translation experiments and protein sequencing revealed that the TGEV-PL1pro cleaves the polyproteins pp1a/pp1ab at 879Gly|Gly880, releasing the carboxyl- and amino-terminal ends of nsp2 and nsp3, respectively. The corresponding cleavage site in the pp1a/pp1ab of SARS-CoV was shown to be processed by PL2pro at 818Gly|Ala819. A mutational analysis showed that the residues Cys1093 (TGEV PL1pro) and Cys1651 (SARS-CoV PL2pro) are essential for proteolytic activity, confirming previous predictions on their catalytic (nucleophilic) functions. Consistent with the in vitro cleavage data, the upstream processing product, nsp2, could be identified in TGEV-infected cells. The data, together with previous studies, suggest that coronaviral PLpro-mediated proteolytic cleavages –despite the low conservation of the polyprotein substrate and even variation in the number of catalytically active PLpro domains– occur in a largely conserved manner. The second part of this work was devoted to identifying and characterising the ADP-ribose-1"-monophosphatase (Appr-1"-pase) activity predicted to be associated with another conserved nsp3-subdomain called X. To characterise the features and identify possibly existing common properties among the enzymes that mediate and/or regulate the coronavirus life cycle, the activities of X domains from three coronaviruses, HCoV-229E, TGEV and SARS-CoV, which belong to different coronavirus serogroups, were investigated in vitro and compared with each other. By using E. coli-expressed forms of these three viral X domains, it could be demonstrated that all these proteins are able to dephosphorylate ADP-ribose-1"-phosphate, a side product of cellular tRNA splicing, to produce ADP-ribose. The data unambiguously establish the Appr-1"-pase activity of coronaviral X domains and suggest that the activity is conserved in all coronaviruses. Further studies into the substrate specificity and possible active-site residues, which were done by using mutant forms of the bacterially expressed HCoV-229E X domain, led us to suggest that the phosphohydrolase activity is highly specific for the substrate Appr-1"-p and predict that that the replicase polyprotein residues, Asn1302, Asn1305, His1310, Gly1312, and Gly1313, are part of the enzyme's active site. Finally, effects on viral RNA synthesis and virus reproduction were studied by using an Appr-1"-pase-deficient HCoV-229E mutant. Surprisingly, neither viral RNA synthesis nor virus titer was found to be affected and no reversion to the wild-type sequence was detected when the mutant virus was passaged in cell culture. Taken together, the data suggest that coronavirus replicase genes also encode non-essential functions. Although being dispensable in tissue culture, such accessory and/or regulatory functions might be a selective advantage or even prove to be essential for viral replication in the infected host. The biological significance of this novel enzymatic activity remains to be identified. KW - Coronaviren KW - Proteine KW - Coronavirus KW - Protease KW - ADP-Ribose-1"-Phosphatase KW - Coronavirus KW - Protease KW - ADP-Ribose-1"-phosphatase Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19449 ER - TY - THES A1 - Ivanov, Konstantin T1 - Charakterisierung der Helikase- und Endonukleaseaktivitäten des Humanen Coronavirus 229E und des SARS-Coronavirus T1 - Characterization of the helicase and the endonuclease activities from HCoV 229E and SARS-CoV N2 - Humane Coronaviren sind wichtige Pathogene, die vor allem mit respiratorischen (z.B. SARS) und enteralen Erkrankungen assoziiert sind. Coronaviren besitzen das größte gegenwärtig bekannte RNA-Genom aller Viren (ca. 30 Kilobasen). Die Replikation des Genoms und die Synthese zahlreicher subgenomischer RNAs, die die viralen Strukturproteine und einige akzessorische, vermutlich virulenzassoziierte, Proteine kodieren, erfolgt durch die virale Replikase. Die coronavirale Replikase ist ein Multienzym-Komplex, der durch die proteolytische Prozessierung großer Vorläuferproteine (Polyproteine pp1a und pp1ab) entsteht und 16 virale Nichtstrukturproteine (nsp), aber auch einige zelluläre Proteine, beinhaltet. Obwohl die Charakterisierung der Funktionen der einzelnen Proteine und das Verständnis der molekularen Grundlagen der coronaviralen Replikation noch in ihren Anfängen stecken, ist bereits jetzt klar, dass die an der Replikation beteiligten Mechanismen deutlich komplexer sind als bei den meisten anderen RNA-Viren. Man hofft, dass aus der Untersuchung der einzelnen an der Replikation beteiligten Proteine Erkenntnisse zu den Besonderheiten des Lebenszyklus dieser ungewöhnlich großen RNA-Viren abgeleitet werden können und dass sich daraus auch Ansatzpunkte für die Entwicklung von Inhibitoren einzelner Proteine/Enzyme ergeben, die für eine zukünftige antivirale Therapie genutzt werden könnten. In der vorliegenden Arbeit wurden zwei enzymatische Aktivitäten von Coronaviren, eine Helikase und eine Endonuklease, die Teil der coronaviralen Nichtstrukturproteine nsp13 bzw. nsp15 sind, in vitro untersucht. Zur Etablierung allgemeingültiger Prinzipien coronaviraler Enzymaktivitäten wurden die homologen Proteine von HCoV-229E und SARS-CoV, also von Vertretern unterschiedlicher serologischer und genetischer Coronavirus-Gruppen, parallel untersucht und ihre Eigenschaften miteinander verglichen. Die nsp13-Helikase des SARSCoronavirus wurde als bakterielles Fusionsprotein exprimiert, und die nsp13-Helikase des humanen Coronavirus 229E wurde in Insektenzellen mittels baculoviraler Vektoren exprimiert. Beide Proteine zeigten Polynukleotid-stimulierbare NTPase- und 5'-3'-Helikase-Aktivitäten. Darüber hinaus besaßen sie vergleichbare Hydrolyseaktivitäten gegenüber den 8 getesteten Ribound Desoxyribonukleosidtriphosphaten. Die Anwesenheit von poly(U) führte zu einer 3-fachen Erhöhung der katalytischen Effizienz (kcat/Km) und einer etwa 100-fachen Steigerung der Hydrolysegeschwindigkeit (kcat). Es wurde am Beispiel von HCoV-229E-nsp13 gezeigt, dass Nukleinsäuresubstrate mit hoher Affinität (K50 ≈ 10-8 M), jedoch ohne erkennbare Präferenz für einzel- oder doppelsträngige DNA- oder RNA-Substrate gebunden werden. Solch eine feste Bindung ist typisch für Enzyme, die prozessiv mit Nukleinsäuren interagieren. Sie korreliert darüber hinaus mit der beobachteten effizienten Entwindung (Trennung) von RNA- und DNADuplexen mit langen, doppelsträngigen Bereichen von 500 Basenpaaren und mehr. Dies legt eine Funktion als replikative Helikase nahe, wie sie beispielweise bei der effektiven Entwindung doppelsträngiger replikativer Intermediate benötigt werden könnte. In dieser Arbeit wurde darüber hinaus eine neue enzymatische Aktivität coronaviraler Helikasen entdeckt. Die gefundene RNA-5'-Triphosphatase-Aktivität nutzt das aktive Zentrum der NTPase-Aktivität und katalysiert wahrscheinlich die erste Reaktion innerhalb der Synthese der Cap-Struktur am 5’- Ende viraler RNAs. Die sehr ähnlichen biochemischen Eigenschaften der HCoV-229E- und SARS-CoV-Helikasen lassen vermuten, dass die Enzymologie der viralen RNA-Synthese (trotz relativ geringer Sequenzidentität der beteiligten Enzyme) unter den Vertretern unterschiedlicher Gruppen von Coronaviren konserviert ist. Der zweite Teil der Arbeit beschäftigte sich mit der biochemischen Charakterisierung des Nichtstrukturproteins nsp15, für das eine Endonuklease-Aktivität vorhergesagt worden war. Auch in diesem Fall wurden die entsprechenden Proteine von HCoV-229E und SARS-CoV charakterisiert. Beide (bakteriell exprimierten) Enzyme zeigten identische enzymatische Eigenschaften. In-vitro-Experimente bestätigten, dass diese Proteine eine Mn2+-abhängige RNA- (jedoch nicht DNA-) Endonukleaseaktivität besitzen. Sie spalten doppelsträngige RNA deutlich effektiver und spezifischer als einzelsträngige RNA. Die Enzyme spalten an Uridylat-Resten und erzeugen Produkte mit 2', 3'-Zyklophosphat-Enden. Bei doppelsträngigen RNA-Substraten wurde eine Spezifität für 5'-GU(U)-3' gefunden. Die Tatsache, dass diese Sequenz in den nidoviralen transkriptionsregulierenden Sequenzen (TRS) der Minusstränge konserviert ist und auch die Endonuklease bei allen Nidoviren konserviert ist, unterstützt die Hypothese, dass die Endonukleaseaktivität eine spezifische Funktion innerhalb der coronaviralen (nidoviralen) diskontinuierlichen Transkription besitzt. N2 - Human coronaviruses are important pathogens that are mainly associated with respiratory (e.g. SARS) and enteric diseases. With genome sizes of about 30 kilobases, coronaviruses are the largest RNA viruses currently known. The replication of the genome RNA and the synthesis of multiple subgenomic (sg) RNAs, which encode structural and accessory (probably virulenceassociated) proteins, is mediated by the viral replicase. The coronaviral replicase is a multienzyme complex, which is produced from viral precursor polyproteins (pp1a and pp1ab) that are autoproteolytically processed into 16 nonstructural proteins (nsp). It also involves several cellular proteins. Although the functional characterization of most of these proteins and, more generally, the understanding of the molecular mechanisms involved in coronavirus replication are still at an early stage, it is already clear that these mechanisms are much more complex than those used by most other RNA viruses. The investigation of the proteins involved in virus replication is anticipated to result in a better understanding of the specific features of the replication cycle of these unusually large RNA viruses, potentially providing novel approaches to the development of enzyme (protein) inhibitors that, in the long run, may be developed into drugs suitable for antiviral therapy. In this work, two coronavirus enzymatic activities, a helicase and an endonuclease, residing in the coronavirus nonstructural proteins nsp13 and nsp15, respectively, were investigated in vitro. In order to establish potentially existing common principles of coronavirus enzymatic activities, the homologous proteins of HCoV-229E and SARS-CoV, which belong to different serological and genetic coronavirus groups, were studied in parallel and their properties were compared with each other. The SARS-CoV helicase was expressed in bacteria as a fusion protein and the helicase of HCoV-229E was expressed in insect cells using baculovirus vectors. Both proteins were shown to have polynucleotide-stimulated NTPase and 5’-to-3’ helicase activities. Furthermore, they had comparable hydrolysis activities with all eight (natural) ribo- and deoxyribonucleoside triphosphates. The presence of poly(U) led to a 3-fold increase of the catalytic efficiency (kcat/Km) and an about 100-fold acceleration of the hydrolysis rate (kcat). Using HCoV-229E nsp13 as an example, it was shown that the coronavirus helicase has a high binding affinity for nucleic acids (K50 ≈ 10-8 M). No preference for single-stranded (ss) versus double-stranded (ds) substrates could be established for this protein. Such a tight binding is typical for enzymes acting highly processively on nucleic acids (e.g., polymerases). Furthermore, coronavirus helicases proved to be able to unwind long RNA and DNA duplexes (of 500 bp and more) highly effectively. Together, these data support the idea that coronavirus nsp13s are “replicative helicases” that are involved in the unwinding of long double-stranded replicative intermediates. In this study, yet another enzymatic activity, namely an RNA-5’-triphosphatase activity, was established for coronaviral helicases. The activity, which employs the NTPase active site, probably mediates the first step in the formation of the 5’-cap structures present on coronaviral RNAs. The HCoV-229E and SARS-CoV helicases were found to have very similar biochemical features, suggesting that, despite the relatively low sequence identity among these enzymes, the enzymology involved in viral RNA synthesis is well conserved among members of different coronavirus groups. The second part of the study was devoted to the biochemical characterization of coronavirus nsp15, a protein with predicted endonuclease activity. Also in this case, the homologous proteins from HCoV-229E and SARS-CoV were studied in parallel. Bacterially expressed forms of both enzymes showed essentially identical enzymatic properties. In vitro experiments confirmed that nsp15 possesses a Mn2+-dependent RNA (but not DNA) endonuclease activity. The proteins cleaved double-stranded RNAs much more effectively and specifically than ssRNA substrates. Cleavage was shown to occur at uridylates, generating products with 2’,3’-cyclophosphates. In the case of dsRNA substrates, nsp15 was confirmed to be specific for 5’-GU(U)-3’ sequences. The fact that (i) the GUU sequence is conserved among the negative-strand complements of coronavirus transcription-regulating sequences and (ii) the endonuclease domain is conserved among all nidoviruses supports the hypothesis that the endonuclease activity has a specific function in coronavirus (nidovirus) discontinuous transcription. KW - Coronaviren KW - RNS KW - Helicase KW - Endonucleasen KW - Coronavirus KW - RNA KW - Helikase KW - Endonuklease KW - Coronavirus KW - RNA KW - helicase KW - endonuclease Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15863 ER -