TY - THES A1 - Ziener, Christian H. T1 - Spindephasierung im Kroghschen Kapillarmodell des Myokards T1 - Spin Dephasing in Krogh's Capillary Model of the Myocardium N2 - Der Zusammenhang zwischen den Parametern der Mikrostruktur des Myokards und der Spindephasierung wird hergestellt. Zur Beschreibung der Mikrostruktur des Myokards wurde das Kroghsche Kapillarmodell genutzt. In diesem Modell wird das Myokard auf eine einzige Kapillare reduziert, die von einem konzentrischen Gewebszylinder umgeben ist. In dem Gewebszylinder findet die Dephasierung und Diffusion statt. Mathematisch wird die Dephasierung durch die Bloch-Torrey-Gleichung beschrieben. Experimentell wurde der Signal-Zeit-Verlauf mittels einer PRESS-Sequenz und einer Gradienten-Echo-Sequenz gemessen. Mit den in dieser Arbeit vorgestellten Methoden ist der Zusammenhang zwischen Kapillarradius und Freien Induktionszerfall bekannt. N2 - The relation between the parameters of the microscopic structure of the myocardium and the spin dephasing is analyzed. The microscopic structure of the myocardium is described in terms of Krogh's capillary model. In this model the myocardium is reduced to a single capillary which is surrounded by a concentric tissue cylinder. In the tissue cylinder the dephasing and diffusion process occurs. Mathematically the dephasing process is described by the Bloch-Torrey-equation. Experimentally the Signal-time-decay was measured using a PRESS-sequence and a gradient-echo-sequence. Using the methods provided in this work, the relation between the capillary radius and the measured free induction decay can be given. KW - Herzmuskel KW - Magnetische Resonanz KW - Kernspinrelaxation KW - Myocardium KW - Dephasing KW - Magnetic Resonance Imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73762 ER - TY - THES A1 - Mörchel, Philipp T1 - Funktionelle MR-Tomographie am Tumor T1 - Functional MR-Tomography on Tumors N2 - Ein Teil dieser Arbeit bestand in der Entwicklung und Etablierung von Methoden zur nichtinvasiven Erfassung von radiobiologisch relevanten Parametern des Tumormikromilieus mit der Magnet-Resonanz-Tomographie. Dabei wurden die Tumorperfusion und die Reoxygenierung des Tumors bei Beatmung mit Carbogengas als strahlentherapeutisch prognostisch relevante und vor allem auch beeinflussbare Parameter des Tumors untersucht. Die Untersuchungen fanden an einem Xenograft Modell von neun verschiedenen standardisierten humanen Tumorlinien statt, die auf Oberschenkel von Mäusen transplantiert wurden. Als Teil eines multiinstitutionellen Verbundprojekts wurden parallel zu den NMR-Untersuchungen dieselben Tumorlinien mit verschiedenen Methoden der Histologie und Immunhistologie untersucht. Die Erhebung und Sammlung von einer solch großen Anzahl an Tumordaten, die mit den verschiedensten Untersuchungsmethoden an denselben Tumorlinien erfasst wurden bot eine einmalige Möglichkeit, die einzelnen Tumorparameter miteinander zu korrelieren. Durch die Vielzahl an hier untersuchten Tumorlinien waren aussagekräftige Korrelationen der erfassten Parameter (Perfusion, Reoxygenierung, Laktatverteilung, TCD50, Hypoxie, Blutgefäßdichte) möglich. Damit konnten die Zusammenhänge der einzelnen Parameter des Tumormikromilieus genauer untersucht werden, wodurch das Verständnis über die Vorgänge im Tumor weiter verbessert werden konnte. Mittels quantitativer Messung des oxygenierungssensitiven NMR-Parameters T2* wurde die individuelle Reaktion der Tumoren auf die Atmung von Carbogengas ortsaufgelöst erfasst. Dabei stellte sich die Reoxygenierung als sehr guter prognostischer Faktor für die Strahlentherapie heraus. Durch die Reoxygenierungsmessung kann somit festgestellt werden, ob ein Patient von einer Beatmung mit Carbogengas während der Strahlentherapie profitiert. Zur nichtinvasiven Erfassung der nativen Mikrozirkulation der Tumoren wurden Spin-Labeling-Techniken eingesetzt, die ortsaufgelöste Perfusionskarten über den NMR-Relaxationsparameter T1 liefern. Die Tumorperfusion wurde dabei nicht als Absolutwert berechnet, sondern als Relativwert bezüglich der Muskelperfusion angegeben, um unabhängig vom aktuellen Zustand des Herz-Kreislauf-System des Wirtstieres zu sein. Zwischen den einzelnen Tumorlinien konnten mit dieser Methode signifikante Unterschiede in der Tumormikrozirkulation festgestellt werden. Die Tumorperfusion liegt bei allen untersuchten Linien unter dem Wert der Muskelperfusion. Im zweiten Teil der Arbeit wurde ein Fitalgorithmus entworfen und implementiert, der es ermöglicht, völlig neue Messsequenzen zu entwickeln, die nicht an die Restriktionen der analytischen Fitmethoden gebunden sind. So können z.B. die Schaltzeitpunkte der Pulse zur Abtastung einer Relaxationskurve frei gewählt werden. Auch muss das Spinsystem nicht gegen einen Gleichgewichtswert laufen um die Relaxationszeiten bestimmen zu können. Dieser Algorithmus wurde in Simulationen mit dem Standardverfahren zur T1-Akquisition verglichen. Dabei erwies sich diese Fitmethode als stabiler als das Standardmessverfahren. Auch an realen Messungen an Phantomen und in vivo liefert der Algorithmus zuverlässig korrekte Werte. Die im ersten Teil dieser Arbeit entwickelten Verfahren zur nichtinvasiven Erfassung strahlentherapeutisch relevanter Parameter sollen letztlich in die klinische Situation auf den Menschen übertragen werden. Durch die geringere magnetische Feldstärke und das damit verbundene niedrigere SNR der klinischen Magnettomographen muss jedoch die Anzahl der Mittelungen erhöht werden, um die gleiche Qualität der Messdaten zu erhalten. Dies führt aber schnell zu sehr langen Messzeiten, die einem Patienten nicht zugemutet werden können. Um die Messzeit zu verkürzen wurde eine Messsequenz, aufbauend auf den erarbeiteten Fitalgorithmus entwickelt, die es ermöglicht, die T1- und T2*-Relaxationszeit simultan und in der Dauer einer herkömmlichen T1-Messequenz zu akquirieren. Neben der Messzeitverkürzung ist dieses Messverfahren weniger anfällig gegen Bewegungsartefakte, die bei der räumlichen Korrelation von einzeln nacheinander aufgenommenen T1- und T2*-Relaxationszeitkarten auftreten, da diese in einem Datensatz akquiriert wurden und somit exakt übereinander zu liegen kommen. N2 - One goal of this thesis was the development and implementation of methods for the non-invasive acquisition of radiobiologically relevant parameters of the tumor microenvironment via the nuclear magnetic resonance. Therefore the tumor perfusion and re-oxygenation by application of high oxygen content gases were investigated as radiobiologically relevant and manipulable parameters. The studies were performed on a xenograft model of nine different standardized human tumor lines transplanted to the shank of a mouse. As part of a multi-institutional research project the same tumor lines were examined using histological and immunohistological methods in parallel to the NMR-examination. The collection of such a huge number of tumor parameters acquired on the same tumor lines using different examination methods offered a unique opportunity for a mutual correlation of these parameters. In literature some papers can be found where NMR parameters are correlated with histological data, but often only one or two parameters of one to three tumor lines were under investigation. With the multitude of examined tumor lines in this work significant correlations between the parameters (perfusion, re-oxygenation, lactate distribution, TCD50, hypoxia, blood vessel density) could be found. By means of these results the mutual relation of the different parameters of the tumor microenvironment could be further examined increasing the understanding of the tumor's internal processes. With the quantitative measurement of the oxygenation sensitive NMR parameter T2* the individual response of the tumor to an application of carbogen gas was spatially acquired. The parameter re-oxygenation was found to be a very good prognostic marker for radiotherapy. In conclusion, the parameter T2* and the calculated re-oxygenation maps can be used to determined whether a patient could benefit from breathing carbogen gas during radiotherapy. Using spin-labeling techniques the spatially resolved native microcirculation of the tumor was acquired non-invasively via the relaxation parameter T1. The tumor perfusion was not calculated as an absolute value, but as a relative value in percent normalized to the muscle perfusion in order to be independent of modulations of the heart rate of the host animal. Significant differences in tumor perfusion among the different tumor lines could be found. The tissue perfusion of all tumor lines was found to be lower than the muscle perfusion. In the second part of this work a fitting algorithm has been developed and implemented which allows for the development of completely new measuring sequences without the restrictions of analytical fitting algorithms. E.g. for example the trigger time for the excitation pulses which sample a relaxation curve may be chosen freely. Furthermore the spin system does not need to relax towards a steady-state in order to determine the relaxation times. This new algorithm has been compared in simulations with the standard procedure to acquire the T1 relaxation time. It could be shown that the new fitting method is more stable than the standard method. These results could be verified in real measurements on phantoms and in vivo where the algorithm produces reliable and correct results. The methods for the non-invasive acquisition of radiobiologically relevant parameters developed in the first part of this thesis are to be ported into the clinical situation and applied to the patient. Due to the lower magnetic field and the associated lower SNR of the clinical scanner the number of averages has to be increased in order to achieve the same quality in the acquired datasets. This results in long measurement times, which is very uncomfortable for the patient. In order to reduce the measurement time a sequence based on the introduced fitting algorithm has been developed which allows for the simultaneous acquisition of the T1 and T2* relaxation times in one scan. This combined measurement takes the same time like a conventional IR-experiment for the measurement of the T1 relaxation time. Beside the reduction of the scan time this procedure is less prone to motion artifacts which accrue when correlating T1 and T2* parameter maps which were recorded consecutively. Since the relaxation maps are acquired in one scan the parameter maps can be exactly superposed. KW - Tumor KW - NMR-Bildgebung KW - Funktionelle NMR-Tomographie KW - Magnetische Kernresonanz KW - Kernspinrelaxation KW - Oxygenierung KW - Perfusion KW - Sauerstoffbegasung KW - Functional-NMR Tumor Oxygenation Perfusion Simulation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57178 ER - TY - THES A1 - Waibel, Benjamin T1 - NMR-Methoden zur Identifizierung von Makromolekül-Ligand-Interaktionen T1 - NMR-techniques to identify macromolecule-ligand-interactions N2 - Komplexstrukturen können über NMR-Experimente aufgeklärt werden, die intermolekulare Wechselwirkungen über den Raum detektieren können. Meist kommen dabei NOE- bzw. ROE-Experimente und Weiterentwicklungen dieser Sequenzen zum Einsatz. Auch mit einfachen Versuchen, wie der Bestimmung der Veränderung der chemischen Verschiebungen bei Komplexierung, lassen sich wertvolle Strukturinformationen gewinnen. Durch die Bindung eines Liganden an ein Makromolekül ändern sich viele NMR-spezifische Parameter des Liganden. Dazu gehören NMR-Relaxationszeiten und Diffusionskoeffizienten mit deren Hilfe sich Dissoziationskonstanten der Komplexe ermitteln lassen. Die vorliegende Arbeit beschäftigt sich mit den Möglichkeiten der Identifizierung und Charakterisierung von Ligand-Makromolekül-Interaktionen mittels NMR-Spektroskopie. Drei unterschiedliche Fragestellungen wurden bearbeitet. Einfluss von Harnstoff auf beta-Cyclodextrin-Einschlusskomplexe mit Dipeptiden: Bei kapillarelektrophoretischen Enantiomerentrennungen von Dipeptiden mittels beta-Cyclodextrin kommen häufig sehr hohe Konzentrationen an Harnstoff zum Einsatz, um die Wasserlöslichkeit des beta-CD zu verbessern. Dabei wird die eventuelle Beteiligung des Harnstoffs am Komplex oftmals außer Acht gelassen. Durch den Einsatz unterschiedlichster NMR- und Simulations-Techniken konnte die Beteiligung des Harnstoffs an dem Komplex untersucht und aufgeklärt werden. Relaxationsstudien von Fluorchinolonen mit Micrococcus luteus: Ziel dieser Versuchsreihe war es, anhand von longitudinalen und transversalen Relaxationsmessungen Einblick in das Bindungsverhalten von Fluorchinolonen (Gyrasehemmer) an Bakterienzellen zu erhalten. Mittels der Bestimmung von selektiven 1H-T1-Zeiten in Abhängigkeit des Antibiotikum/Bakterien-Verhältnisses konnten Dissoziationskonstanten der untersuchten Pharmaka an die Bakterienzelle ermittelt werden. Desweiteren wurden 19F-Spin-Spin-Relaxationsexperimente durchgeführt. Proteinbindungsstudien von Gyrasehemmern an BSA: Durch die Bindung von Fluorchinolonen an bovines Serumalbumin ändern sich die scheinbare Molekülmasse und der hydrodynamische Radius des Arzneistoffs stark. Durch selektive T1-Relaxationsmessungen konnten für drei Gyrasehemmer mit unterschiedlichen Proteinbindungseigenschaften die jeweiligen Dissoziationskonstanten an das Albumin ermittelt werden. Eine weitere Möglichkeit Dissoziationskonstanten zu bestimmen war es, Diffusionskoeffizienten bei unterschiedlichen Konzentrationsverhältnissen zu bestimnmen. Über die Ermittlung sogenannter „Affinitätsindices“ war es möglich, die Stärke der Proteinbindung zu charakterisieren. Um den Effekt unterschiedlicher Korrelationszeiten verschiedener Kerne auszumitteln, wurde eine Normalisierung dieser Indices durchgeführt. Auch die Werte dieser Affinitätsindices gaben die Stärke der Proteinbindung der unterschiedlichen Antibiotika sehr gut wider. N2 - The structure of a complex can be clarified by NMR-experiments, which detect intermolecular interactions through space e.g. NOE- and ROE-experiments or further developments of these techniques. Beside these, the determination of the chemical shifts provides useful structural informations. Upon binding to a macromolecule, several NMR-parameters of a small ligand change dramatically. This includes parameters such as different NMR-relaxation times and diffusion coefficients which can be used to determine dissociation constants. The present thesis deals with the possibility of identification and characterization of complexes by NMR-spectroscopy. Three different problems were investigated. Influence of urea to beta-cyclodextrin inclusion complexes with dipeptides: Due to the limited aqueous solubility of beta-CD, enantioseparations utilizing beta-CD as chiral selector are often performed in buffers containing high concentrations of urea. Therefore, the involvement of urea in the constitution of the complex should be kept in mind. In this project the influence of urea was investigated and elucidated by using different NMR- and simulation techniques. Relaxation studies of fluoroquinolones with Micrococcus luteus: The main goal of this investigation was to get an insight in the binding behaviour of fluoroquinolones to a bacterial cell by performing longitudinal and transversal relaxation experiments. Using the determination of selective 1H-T1-relaxation times in dependence of varying the antibiotic/bacteria-relation, dissociation constants of the antibiotic to bacterial cells could be identified. Furthermore, 19F-spin-spin-relaxation experiments were performed. Protein binding studies of fluoroquinolones to BSA: By binding of the fluoroquinolones to bovine serum albumin the apparent molecular mass and the hydrodynamic radius of the ligand strongly change. In this project dissociation constants of three different fluoroquinolones with different binding characteristics were determined by measuring selective relaxation rates. Another possibility to assess dissociation constants of fluoroquinolons was the determination of the antibiotics diffusion constants at different concentration levels. The determination of the so called “affinity indices” offered a further possibility to evaluate the degree of protein binding. To eliminate the effect of different correlation times of different nuclei, a normalization of the affinity indices was performed. The fitted affinity indices also reflect the protein binding of the antibiotics properly. KW - Kernspinrelaxation KW - Fluor-19-NMR-Spektroskopie KW - PFG-NMR-Spektroskopie KW - NMR-Spektroskopie KW - Cyclodextrin KW - Fluorchinolone KW - Proteinbindung KW - Diffusionskonstante KW - Affinitätsindex KW - NMR-spectroscopy KW - cyclodextrins KW - fluoroquinolones KW - diffusion constant KW - relaxation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26589 ER -