TY - THES A1 - Ciaramella, Gabriele T1 - Exact and non-smooth control of quantum spin systems T1 - Exakte und nicht-glatte Kontrolle von Quanten-Spin-Systemen N2 - An efficient and accurate computational framework for solving control problems governed by quantum spin systems is presented. Spin systems are extremely important in modern quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging and quantum computing. In these applications, two classes of quantum control problems arise: optimal control problems and exact-controllability problems, with a bilinear con- trol structure. These models correspond to the Schrödinger-Pauli equation, describing the time evolution of a spinor, and the Liouville-von Neumann master equation, describing the time evolution of a spinor and a density operator. This thesis focuses on quantum control problems governed by these models. An appropriate definition of the optimiza- tion objectives and of the admissible set of control functions allows to construct controls with specific properties. These properties are in general required by the physics and the technologies involved in quantum control applications. A main purpose of this work is to address non-differentiable quantum control problems. For this reason, a computational framework is developed to address optimal-control prob- lems, with possibly L1 -penalization term in the cost-functional, and exact-controllability problems. In both cases the set of admissible control functions is a subset of a Hilbert space. The bilinear control structure of the quantum model, the L1 -penalization term and the control constraints generate high non-linearities that make difficult to solve and analyse the corresponding control problems. The first part of this thesis focuses on the physical description of the spin of particles and of the magnetic resonance phenomenon. Afterwards, the controlled Schrödinger- Pauli equation and the Liouville-von Neumann master equation are discussed. These equations, like many other controlled quantum models, can be represented by dynamical systems with a bilinear control structure. In the second part of this thesis, theoretical investigations of optimal control problems, with a possible L1 -penalization term in the objective and control constraints, are consid- ered. In particular, existence of solutions, optimality conditions, and regularity properties of the optimal controls are discussed. In order to solve these optimal control problems, semi-smooth Newton methods are developed and proved to be superlinear convergent. The main difficulty in the implementation of a Newton method for optimal control prob- lems comes from the dimension of the Jacobian operator. In a discrete form, the Jacobian is a very large matrix, and this fact makes its construction infeasible from a practical point of view. For this reason, the focus of this work is on inexact Krylov-Newton methods, that combine the Newton method with Krylov iterative solvers for linear systems, and allows to avoid the construction of the discrete Jacobian. In the third part of this thesis, two methodologies for the exact-controllability of quan- tum spin systems are presented. The first method consists of a continuation technique, while the second method is based on a particular reformulation of the exact-control prob- lem. Both these methodologies address minimum L2 -norm exact-controllability problems. In the fourth part, the thesis focuses on the numerical analysis of quantum con- trol problems. In particular, the modified Crank-Nicolson scheme as an adequate time discretization of the Schrödinger equation is discussed, the first-discretize-then-optimize strategy is used to obtain a discrete reduced gradient formula for the differentiable part of the optimization objective, and implementation details and globalization strategies to guarantee an adequate numerical behaviour of semi-smooth Newton methods are treated. In the last part of this work, several numerical experiments are performed to vali- date the theoretical results and demonstrate the ability of the proposed computational framework to solve quantum spin control problems. N2 - Effiziente und genaue Methoden zum Lösen von Kontrollproblemen, die durch Quantum- Spin-Systemen gesteuert werden, werden vorgestellt. Spin-Systeme sind in moderner Quantentechnologie wie Kernspinresonanzspektroskopie, Quantenbildgebung und Quan- tencomputern äußerst wichtig. In diesen Anwendungen treten zwei Arten von Quan- tenkontrollproblemen auf: Optimalsteuerungsprobleme und Exaktsteuerungsprobleme beide mit einer bilinearen Kontrollstruktur. Diese Modelle entsprechen der Schrödinger- Pauli-Gleichung, die die Zeitentwicklung eines Spinors beschreibt, und der Liouville-von- Neumann-Mastergleichung, die die Zeitentwicklung eines Spinors und eines Dichteoper- ators beschreibt. Diese Arbeit konzentriert sich auf Quantenkontrollprobleme, die durch diese Modelle beschrieben werden. Eine entsprechende Definition des Optimierungsziels und der zulässigen Menge von Kontrollfunktionen erlaubt die Konstruktion von Steuerun- gen mit speziellen Eigenschaften. Diese Eigenschaften werden im Allgemeinen von der Physik und der in Quantenkontrolle verwendeten Technologie gefordert. Ein Hauptziel diser Arbeit ist die Untersuchung nicht-differenzierbarer Quantenkon- trollprobleme. Deshalb werden Rechenmethoden entwickelt um Optimalsteuerungsprob- lemen, die einen L1-Term im Kostenfunktional enthalten, und Exaktsteuerungsprobleme zu lösen. In beiden Fällen ist die zulässige Menge ein Teilraum eines Hilbertraumes. Die bilineare Kontrollstruktur des Quantenmodells, der L1-Kostenterm und die Nebenbedin- gungen der Kontrolle erzeugen starke Nichtlinearitäten, die die Lösung und Analyse der entsprechenden Problemen schwierig gestalten. Der erste Teil der Disseration konzentriert sich auf die physikalische Beschreibung des Spins von Teilchen und Phänomenen magnetischer Resonanz. Anschließend wird die kon- trollierte Schrödinger-Pauli-Gleichung und die Liouville-von-Neumann-Mastergleichung diskutiert. Diese Gleichungen können ebenso wie viele andere kontrollierte Quantenmod- elle durch ein dynamisches System mit biliniearer Kontrollstruktur dargestellt werden. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung der Optimalsteuer- ungsprobleme, die einen L1-Kostenterm und Einschränkungen der Kontrolle enthalten können, durchgeführt. Insbesondere wird die Existenz von Lösungen und Optimalitäts- bedingungen und die Regularität der optimalen Kontrolle diskutiert. Um diese Optimal- steuerungsprobleme zu lösen werden halbglatte Newtonverfahren entwickelt und ihre su- perlineare Konvergenz bewiesen. Die Hauptschwierigkeit bei der Implementierung eines Newtonverfahrens für Optimalsteuerungsprobleme ist die Dimension des Jacobiopera- tors. In einer diskreten Form ist der Jacobioperator eine sehr große Matrix, war die Konstruktion in der Praxis undurchführbar macht. Daher konzentriert sich diese Ar- beit auf inexakte Krylov-Newton-Verfahren, die Newtonverfahren mit iterativen Krylov- Lösern für lineare Gleichungssysteme kombinieren, was die Konstruktion der diskreten Jacobimatrix erübrigt. Im dritten Teil der Disseration werden zwei Methoden für die Lösung von exakte Steuerbarkeit Problemen für Quanten-Spin-Systemen vorgestellt. Die erste Methode ist eine Fortsetzungstechnik während die zweite Methode auf einer bestimmten Refor- mulierung des exakten Kontrollproblems basiert. Beide Verfahren widmen sich L2-Norm exakten Steuerbarkeitsproblemen. Im vierten Teil die Disseration konzentriert sich auf die numerische Analyse von Quan- tenkontrollproblemen. Insbesondere wird das modifizierte Crank-Nicolson-Verfahren als eine geeignete Zeitdiskretisierung der Schrödingergleichung diskutiert. Es wird erst diskretisiert und nachfolgend optimiert, um den diskreten reduzierten Gradienten für den differenzierbaren Teil des Optimierungsziels zu erhalten. Die Details der Implemen- tierung und der Globalisierungsstrategie, die angemessenes numerisches Verhalten der halbglatten Newtonverfahren garantiert, werden behandelt. Im letzten Teil dieser Arbeit werden verschiedene numerische Experimente durchge- führt um die theoretischen Ergebnisse zu validieren und die Fähigkeiten de vorgeschla- genen Lösungsstrategie für Quanten-Spin-Kontrollproblemen zu validieren. KW - Quantum control KW - Spin systems KW - Nonsmooth optimization KW - Exact-controllability KW - Spinsystem KW - Nichtglatte Optimierung KW - Kontrolltheorie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118386 ER - TY - THES A1 - Kurniawan, Indra T1 - Controllability Aspects of the Lindblad-Kossakowski Master Equation : A Lie-Theoretical Approach T1 - Kontrollierbarkeitsaspekte der Lindblad-Kossakowski Master-Gleichung : Ein Lie-theoretischer Ansatz N2 - One main task, which is considerably important in many applications in quantum control, is to explore the possibilities of steering a quantum system from an initial state to a target state. This thesis focuses on fundamental control-theoretical issues of quantum dynamics described by the Lindblad-Kossakowski master equation which arises as a bilinear control system on some underlying real vector spaces, e.g controllability aspects and the structure of reachable sets. Based on Lie-algebraic methods from nonlinear control theory, the thesis presents a unified approach to control problems of finite dimensional closed and open quantum systems. In particular, a simplified treatment for controllability of closed quantum systems as well as new accessibility results for open quantum systems are obtained. The main tools to derive the results are the well-known classifications of all matrix Lie groups which act transitively on Grassmann manifolds, and respectively, on real vector spaces without the origin. It is also shown in this thesis that accessibiity of the Lindblad-Kossakowski master equation is a generic property. Moreover, based on the theoretical accessibility results, an algorithm is developed to decide when the Lindblad-Kossakowski master equation is accessible. N2 - Eine Hauptaufgabe, mit zahlreichen wichtigen Anwendungen in dem Gebiet der Quantenkontrolle, ist die Untersuchung der Möglichkeit zur Steuerung eines quantenmechanischen Systems von einem Anfangszustand zum einem Zielszustand. Diese Arbeit konzentriert sich auf die grundlegenden kontrolltheoretischen Fragen, wie z.B solche zur Erreichbarkeits- und Kontrollierbarkeit, über quantendynamische Systeme, die durch die Lindblad-Kossakowski Master Gleichungen beschrieben werden. Diese Gleichungen bilden bilineare Kontrollsysteme auf einem reellen Vektorraum. Basierend auf Lie-algebraische Methoden der nicht-linearen Kontrolltheorie, wird in dieser Arbeit ein vereinheitlichter Zugang präsentiert um die kontrolltheoretischen Fragen in endlichdimensionalen, geschlossenen wie offenen Quantensystemen zu beantworten. Insbesondere, werden eine vereinfachte Verarbeitung der Kontrollierbarkeitsfragen geschlossener Systeme sowie neue Ergebnisse zur Frage der Zugänglichkeit offener Systeme ausgearbeitet. Der Hauptansatz, um dieser Ergebnisse abzuleiten, besteht in der bekannten Klassifizierung aller Matrix-Lie Gruppen, die auf Grassmann Mannigfaltigkeiten bzw. reellen Vektorräumen ohne Ursprung, transitiv operieren. In dieser Arbeit, werden auch generische Eigenschaften zur Zugänglichkeit der Lindblad-Kossakowski Master Gleichung ausgeführt. Ferner wird, mit Hilfsmittel von theoretischer Ergebnisse, ein Algorithmus zur Bestimmung der Zugänglichkeit der Lindblad-Kossakowski Master Gleichung entwickelt. KW - Kontrolltheorie KW - Quantenmechanisches System KW - Master-Gleichung KW - Lie-Gruppe KW - Controllability KW - Blinear Quantum Control Systems KW - Lindblad-Kossakowski Master Equation KW - Transitive Lie Groups Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48815 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER -