TY - THES A1 - Lehmann, Julian T1 - Hochauflösende Fluoreszenzmikroskopie beleuchtet den Oligomerisierungsstatus pflanzlicher Membranproteine T1 - Super-resolution microscopy elucidates the stoichiometry of plant membrane proteins N2 - SLAC/SLAH Anionenkanäle, die zur Familie der langsamen Anionenkanäle gehören, repräsentieren Schlüsselproteine in der pflanzlichen Stressantwort. Neben ihrer Aufgabe in Stresssituationen, ist eine Untergruppe der Kanäle für die Beladung der Leitgefäße mit Nitrat und Chlorid in der Stele der Pflanzenwurzeln verantwortlich. Biophysikalische und pflanzenphysiologische Studien stellten heraus, dass vor Allem der Anionenkanal SLAH3 für die Beladung der Xylem Leitgefäße mit Nitrat und Chlorid verantwortlich ist. Ihm zur Seite gestellt werden noch die elektrisch inaktiven Homologe SLAH1 und SLAH4 in der Wurzel exprimiert. Sie steuern die Aktivität von SLAH3 durch die Assemblierung zu SLAH1/SLAH3 oder SLAH3/SLAH4 Heteromeren. Neben der Kontrolle durch Heteromerisierungsereignisse, werden SLAH3 Homomere sehr spezifisch und schnell durch zytosolische Ansäuerung aktiviert. Obwohl bereits die Kristallstruktur des bakteriellen Homologs HiTehA zu pflanzlichen SLAC/SLAH Anionenkanälen bekannt ist, welche HiTehA als Trimer charakterisiert, sind die Stöchiometrie und der Polymerisierungsgrad der pflanzlichen SLAC/SLAHs bisher noch unbekannt. Die Fluoreszenzmikroskopie umfasst viele etablierte Anwendungsmethoden, wie die konfokale Laserrastermikroskopie (CLSM), Techniken mit verbesserter Auflösung, wie die Mikroskopie mit strukturierter Beleuchtung (SIM) und hochauflösende Methoden, welche durch die Lokalisationsmikroskopie (z.B. dSTORM und PALM) oder die Expansionsmikroskopie (ExM) vertreten werden. Diese unterschiedlichen Mikroskopie-methoden ermöglichen neue Einblicke in die Organisation von Proteinen in biologischen Systemen, die bis auf die molekulare Ebene hinunterreichen. Insbesondere im Bereich der hochauflösenden Fluoreszenzmikroskopie sind im Gegensatz zu tierischen Frage-stellungen bisher jedoch nur wenige Untersuchungen in pflanzlichen Geweben durchgeführt worden. Die Lokalisationsmikroskopie ermöglicht die Quantifizierung einzelner Moleküle in nativen Systemen und lässt überdies Rückschlüsse auf den Polymerisierungsgrad von Proteinen zu. Da Poly- und Heteromerisierung von Proteinen oftmals mit der Funktionalität eines entsprechenden Proteins einhergeht, wie es bei den SLAC/SLAH Anionenkanälen der Fall ist, wurden in dieser Arbeit PALM Messungen zur Untersuchung des Polymerisierungsgrades und Interaktionsmuster der Anionenkanäle angewendet. Ferner wurden Expressionsmuster der SLAC/SLAHs untersucht und zudem Mikroskopieanwendungen im Pflanzengewebe etabliert und verbessert. In Bezug auf die Mikroskopieanwendungen konnten wir in Arabidopsis thaliana (At) Wurzeln die polare Verteilung von PIN Proteinen mittels SIM bestätigen und die gruppierte Verteilung in der Plasmamembran am Zellpol auflösen. In Wurzel-querschnitten war es möglich, Zellwände zu vermessen, den Aufbau der Pflanzenwurzel mit den verschiedenen Zelltypen zu rekonstruieren und diesen in Zusammenhang mit Zellwanddicken zu bringen. Anhand dieser Aufnahmen ließ sich die Auflösungsgrenze eines SIM-Mikroskops bestimmen, weshalb diese Probe als Modellstruktur für Auflösungsanalysen, zur Kontrolle für die korrekte Bildverarbeitung bei hochauflösender Bildgebung und andere Fragestellungen empfohlen werden kann. Für die Expansionsmikroskopie in pflanzlichen Proben konnten ein enzym- und ein denaturierungsbasiertes Präparationsprotokoll etabliert werden. Dabei wurden ganze At Setzlinge, Wurzelabschnitte und Blattstücke gefärbt, expandiert und mit zwei bis drei Mal verbesserter Auflösung bildlich dargestellt. In diesem Zusammenhang waren Aufnahmen ganzer Wurzel- und Blattproben mit beeindruckender Eindringtiefe und extrem geringem Hintergrundsignal möglich. Zudem wurden die Daten kritisch betrachtet, Probleme aufgezeigt, gewebespezifische Veränderungen dargestellt und limitierende Faktoren für die ExM in Pflanzenproben thematisiert. Im Fokus dieser Arbeit stand die Untersuchung der SLAC/SLAH Proteine. SLAH2 wird in den Wurzeln vornehmlich in Endodermis- und Perizykelzellen exprimiert, was anhand verschiedener At SLAH2 YFP Mutanten untersucht werden konnte. Dies unterstützt die Annahme, dass SLAH2 bei der Beladung der Leitgefäße mit Nitrat maßgeblich beteiligt ist. Es ist denkbar, dass SLAH2 ebenfalls eine wachstumsbeeinflussende Funktion über die Regulation von Nitratkonzentrationen zugeschrieben werden kann. Darauf deuten vor allem die verstärkte Expression von SLAH2 im Bereich der Seitenwurzeln und die heterogene Expression in der Elongations-, Differenzierungs- und meristematischen Zone hin. Die Membranständigkeit von SLAH4 konnte nachgewiesen werden und FRET FLIM Untersuchungen zeigten eine hohe Affinität von SLAH4 zu SLAH3, was die beiden Homologe als Interaktionspartner identifiziert. Für die Bestimmung des Oligomerisierungsgrades mittels PALM wurden die pflanzlichen Anionenkanäle in tierischen COS7-Zellen exprimiert. Die elektrophysiologische Funktionalität der mEOS2-SLAC/SLAH-Konstrukte wurde mit Hilfe von Patch-Clamp-Versuchen in COS7-Zellen überprüft. Um Expressionslevel, Membranständigkeit und die Verteilung über die Membran der SLAC/SLAHs zu verifizieren, wurden dSTORM-Aufnahmen herangezogen Schließlich ermöglichten PALM-Aufnahmen die Bestimmung des Polymerisierungs-grades der SLAC/SLAH Anionenkanäle, die stöchiometrischen Veränderungen bei Heteromerisierung von SLAH3 mit SLAH1 oder SLAH4 und auch der Einfluss einer zytosolischer Ansäuerung auf den Polymerisierungsgrad von SLAH3 Homomeren. Zudem weisen die Oligomerisierungsanalysen von SLAH3 Mutanten darauf hin, dass die Aminosäuren Histidin His330 und His454 entscheidend an der pH sensitiven Regulierung von SLAH3 beteiligt sind. Durch die erhobenen Daten konnten also entscheidende, neue Erkenntnisse über die Regulationsmechanismen von pflanzlichen Anionenkanälen auf molekularer Ebene gewonnen werden: Unter Standardbedingungen liegen SLAC1, SLAH2 und SLAH3 hauptsächlich als Dimer vor. Auf eine zytosolische Ansäuerung reagiert ausschließlich SLAH3 mit einer signifikanten stöchiometrischen Veränderung und liegt im aktiven Zustand vor Allem als Monomer vor. Der Oligomerisierungsgrad von SLAC1 und SLAH2 bleibt hingegen bei einer zytosolischen Ansäuerung unverändert. Ferner kommt es bei der Interaktion von SLAH3 mit SLAH1 oder SLAH4 zur Formierung eines Heterodimers, welches unbeeinflusst durch den zytosolischen pH bleibt. Im Gegensatz dazu bleiben die elektrisch inaktiven Untereinheiten SLAH1 und SLAH4 monomerisch und assemblieren ganz spezifisch nur mit SLAH3. Die hochauflösende Fluoreszenz-mikroskopie, insbesondere PALM erlaubt es also Heteromerisierungsereignisse und Änderungen im Poylmerisierungsgrad von Membranproteinen wie den SLAC/SLAHs auf molekularer Ebene zu untersuchen und lässt so Rückschlüsse auf physiologische Ereignisse zu. N2 - Anion channels of the slow anion channel family (SLAC/SLAH) are general master switches of plant stress responses. In addition a subgroup of channels load the vascular tissue in roots with nitrate and chloride. The activity of the main nitrate and chloride loading anion channel, SLAH3, is controlled by heteromerization with the electro-physiologically silent subunits SLAH1 and SLAH4 or alternatively by cytosolic acidification. Although the crystal structure of a bacterial homologue (HiTehA) of plant SLAC/SLAH anion channels is already known and suggests a trimeric structure, the stoichiometry and the multimerization level of the plant anion channel counterparts are still undiscovered. Fluorescence microscopy encompasses numerous well-established application methods like confocal laser scanning microscopy (CLSM), high resolution techniques like structured illumination microscopy (SIM) and super resolution microscopy represented by single molecule localization microscopy (e.g. dSTORM and PALM) or recently upcoming methods like expansion microscopy (ExM). These different application methods open new fields of insight into the biological organization of proteins, even down to the molecular level. In comparison to faunal studies, very little floral enquiries have been conducted, especially in the super resolution-sector. Single-molecule localization microscopy enables individual molecules to be quantified in the native environment and therefore allows conclusions regarding protein stoichiometry. As protein stoichiometry often involves cellular function of the corresponding protein, we used PALM applications and single molecule counting strategies to analyze the stoichiometric distribution of anion channel complexes. Moreover, in this study, expression patterns of the SLAC/SLAH proteins were investigated and different microscopic applications on plant specific issues could be improved and established. Referring to microscopic applications, we confirmed the polar orientation of PIN proteins via SIM and succeeded in resolving the clustered distribution in the plasma membrane at the cellular pole. Besides we were also able to measure cellwall dimensions of root cross sections from Arabidopsis thaliana seedlings and therefore succeeded in concluding the root architecture, designating the various cell types within the root, comparing them with cellwall thickness and evaluating resolution limits of the SIM microscope. Due to these reasons, this specimen can be recommended as a model structure for resolution analyses, control measurements regarding tissue-intactness after image processing for super-resolution images, or further questions. We turned out to establish two different protocols for ExM-studies in plants. One is based on enzymatic digestion and the other one on denaturation. We were able to label, expand and image whole At-seedlings, root- and leaf segments and thereby improved the resolution 2 3 fold. In this regard we managed to comprehensively depict the intact structure of leaves and roots with impressive penetration depth and extremely low background. We also examined our data and identified tissue-specific changes, discuss problems and possible limits of ExM in plants. The major part of this work was the investigation of SLAC/SLAH proteins. The expression of SLAH2 in roots is mainly located in endodermal and pericycle cells which was observed in various At-SLAH2-YFP mutants. Thus, strengthening the hypothesis, that SLAH2 has a major role in loading the vascular tissue with nitrate. The heterogeneous expression levels of SLAH2 in the meristematic-, elongation- and differentiation zone and moreover the upregulation in areas of lateral root formation also suggests that SLAH2 has an effect on plant growth by regulating nitrate levels. SLAH4 is located in the plasma membrane and FRET FLIM measurements showed a high affinity to SLAH3, validating the two homologues as interaction partners. For PALM-stoichiometry analyses, the plant anion channels were expressed in mammalian COS7-cells, in order to avoid endogenous falsification of the stoichiometries, as well as impractical reasons of PALM imaging in plant tissue. Hence, checking the electrophysiological functionality of mEOS2-SLAC/SLAH constructs via patch-clamp measurements. dSTORM-measurements were used to verify expression levels, correct membrane-association and the distribution of the SLAC/SLAHs in COS7 cells. We determined the multimerization level of SLAC/SLAHs upon cytosolic acidification and monitor stoichiometric changes upon heteromerization of SLAH3 with SLAH1 and SLAH4. On the basis of our data the following valuable new insights into the regulation mechanisms of plant anion channels were revealed: under control conditions, SLAC1, SLAH2 and SLAH3 are mainly depicted as dimers. Upon cytosolic acidification with NaOAc the stoichiometries of SLAC1 and SLAH2 remained unchanged, whereas the amount of dimeric SLAH3 is significantly reduced and shifts to a mainly monomeric distribution. It could also be assessed that SLAH3 interacts with SLAH1 or SLAH4, thereby forming a heterodimer, which is barely separable by acidification. In contrast, for SLAH1 and SLAH4 no affinity was observed. Moreover, the stoichiometries of different SLAH3-mutants indicated a crucial role of the amino acids histidin His330 and His454 in the pH-sensitive regulation of SLAH3. Hence, super-resolution micrsocopy, especially PALM allows the quantification of polymerization- and heteromerization-levels of proteins like the SLAC/SLAH anion-channels on the molecular level and therefore enabling physiological conclusions. KW - Fluoreszenzmikroskopie KW - Membranproteine KW - Oligomerisation KW - Superresolution microscopy KW - SLAC/SLAH KW - PALM stoichiometry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211762 ER - TY - THES A1 - Thein, Marcus T1 - Porins of Lyme Disease and Relapsing Fever Spirochetes T1 - Porine aus Lyme-Borreliose- und Rückfallfieber- Spirochäten N2 - Die Gattung Borrelia gehört zur Abteilung der Spirochäten, einem alten Zweig der Bakteriendomäne, der nur entfernt mit Gram-negativen Bakterien verwandt ist. Sämtliche Arten dieser Gattung sind obligate Parasiten. Borrelien können in die Erreger zweier humaner Krankheiten eingeteilt werden: die Lyme-Borreliose und das Rückfallfieber. Borrelien besitzen mit 0.91 Mb ein sehr kleines Chromosom und sind daher in ihren metabolischen Fähigkeiten eingeschränkt. Folglich ist das Überleben sämtlicher Borrelienarten absolut abhängig von Nährstoffen, die von ihren Wirten bereitgestellt werden. Der Transport dieser Nährstoffe und anderer Moleküle über die äußere Membran wird durch porenformende Proteine, so genannte Porine ermöglicht. Porine sind wassergefüllte Kanäle, die in zwei Klassen unterteilt werden können: allgemeine Diffusionsporen und substratspezifische Porine. Aus dem Lyme-Borreliose Erreger Borrelia burgdorferi wurden bisher drei mutmaßliche Porine charakterisiert und beschrieben: P13, Oms28 und P66. Demgegenüber sind die Kenntnisse über Porine in Rückfallfieberarten rudimentär und es wurde bisher noch kein einziges Porin für Vertreter dieser Krankheit identifiziert. Unter Berücksichtigung dieses Hintergrunds war die allgemeine Zielsetzung dieser Arbeit, einen Einblick in die Porinzusammensetzung von sowohl Lyme Borreliose- als auch Rückfallfieber-Spirochäten zu erlangen. Dieses Ziel konnte erreicht werden, indem Porine aus den Außenmembranen von Borrelien isoliert und identifiziert wurden und anschließend biophysikalisch in künstlichen Lipidmembranen charakterisiert wurden. Ein Kapitel dieser Arbeit beschreibt die Identifizierung und Charakterisierung des ersten Porins aus Rückfallfiebererregern. Das porenformende Protein wurde aus den Außenmembranen von Borrelia duttonii, Borrelia hermsii und Borrelia recurrentis isoliert und Oms38 genannt, für „outer membrane-spanning protein of 38 kDa“. Die biophysikalische Charakterisierung mit der „black lipid bilayer“ Methode zeigte, dass Oms38 kleine, wassergefüllte Kanäle mit einer Einzelkanalleitfähigkeit von 80 pS in 1 M KCl bildet. Diese Kanäle sind nicht spannungsabhängig und leicht selektiv für Anionen mit einem Permeabilitätsverhältnis von Kationen zu Anionen von 0,41 in KCl. Ein homologes Protein zu Oms38 wurde in den Lyme Borreliose Erregern Borrelia burgdorferi, Borrelia garinii und Borrelia afzelii identifiziert. Das porenformende Protein dieser Arten weist eine hohe Sequenzhomologie zu Oms38 auf und zeigt ähnliche biophysikalische Eigenschaften, das heißt es formt Poren von 50 pS in 1 M KCl. Durch Titrationsexperimente konnte gezeigt werden, dass die Pore teilweise durch Dicarboxylate blockiert werden kann. Eine Auswertung dieser Versuche legte nahe, dass dieses Protein keine allgemeine Diffusionspore darstellt, sondern einen Kanal mit einer spezifischen Bindestelle für diese Komponenten. Daher wurde dieses Porin DipA genannt, was für „dicarboxylate-specific porin A“ steht. In einer anderen Versuchsreihe wurde gezeigt, dass das Porin P66 sowohl in Lyme Borreliose Erregern als auch in Rückfallfieberarten vorhanden ist. Hierfür wurden die Außenmembranen der Lyme Borreliose Erreger Borrelia burgdorferi, Borrelia afzelii und Borrelia garinii und der Rückfallfieberarten Borrelia duttonii, Borrelia recurrentis und Borrelia hermsii genauer untersucht. Mit Ausnahme des P66 Homologs von Borrelia hermsii rekonstituierten P66 Proteine aus allen Arten sehr aktiv in künstliche Membranen und formten Poren zwischen 9 und 11 nS in 1 M KCl. Die biophysikalischen Eigenschaften der Homologe wurden in Experimenten mit „black lipid bilayer“ Membranen ausführlich verglichen. Des Weiteren wurden Porendurchmesser und Konstitution des Borrelia burgdorferi Porins P66 genau untersucht. Hierfür wurde die P66 Einzelkanalleitfähigkeit in Anwesenheit von verschiedenen Nichtelektrolyten in künstlichen Lipidmembranen analysiert. Der effektive Durchmesser des P66 Wasserlumens wurde auf ~1.9 nm bestimmt. Darüber hinaus konnte P66 mit bestimmten Nichtelektrolyten wie PEG 400, PEG 600 und Maltohexaose blockiert werden. Weitere Blockierungsexperimente auf Einzelkanalebene deckten sieben Unterzustände von P66 auf, die auf ein P66 Heptamer schließen ließen. Dieser heptamere Charakter konnte durch Blue native PAGE Analysen bestätigt werden. Zusammenfassend beschreibt diese Dissertation detaillierte biochemische und biophysikalische Untersuchungen von Porinen aus sowohl Lyme Borreliose- als auch Rückfallfieber-Borrelien. Erkenntnisse aus dieser Arbeit bringen das Verstehen der Nährstoffaufnahme über Außenmembranen dieser streng wirtsabhängigen, pathogenen Spirochäten einen großen Schritt vorwärts. Ein fundiertes Wissen über oberflächenexponierte Proteine wie Porine ist Vorraussetzung für die Herstellung erfolgreicher Impfstoffe und Therapeutika gegen die von Borrelien verursachten Krankheiten. N2 - The genus Borrelia belongs to the spirochete phylum, an ancient evolutionary branch of the domain bacteria that is only afar related to Gram-negative bacteria. Borreliae can be subdivided into the agents of the two borrelian-caused human diseases, Lyme disease and relapsing fever. Both disease patterns are closely related to the peculiar biology of Borrelia species and exhibit a wide spectrum of diverse clinical manifestations. Due to the small 0.91 Mb chromosome, borreliae have a lack of biosynthetic capacity. Thus, all Borrelia species are highly dependent on nutrients provided by their hosts. The transport of nutrients and other molecules across the outer membrane is enabled by pore-forming proteins, so-called porins. Porins are water-filled channels and can be subdivided into two different classes, general diffusion pores and substrate-specific porins. In terms of the Lyme disease agent Borrelia burgdorferi, three putative porins were characterized in previous studies: P13, Oms28 and P66. In contrast to Lyme disease species, the porin knowledge of relapsing fever Borrelia is low, which means that not any porin has actually been described for representatives of these agents. Thus, the general aim of this thesis was to provide insight into the porin content of both, Lyme disease and relapsing fever spirochetes. This aim could be achieved by isolating and identifying porins from Borrelia outer membranes and by biophysically characterizing them in artificial lipid membranes. In one chapter of this study, the first identification and characterization of a relapsing fever porin is presented. The pore-forming protein was isolated from outer membranes of Borrelia duttonii, Borrelia hermsii and Borrelia recurrentis and designated Oms38, for “outer membrane-spanning protein of 38 kDa”. Biophysical characterization of Oms38 was achieved by using the black lipid bilayer method and demonstrated that Oms38 forms small, water-filled channels with a single-channel conductance of 80 pS in 1 M KCl. The Oms38 channel did not exhibit voltage-dependent closure and is slightly selective for anions with a permeability ratio of cations over anions of 0.41 in KCl. Subsequently, a protein homologous to Oms38 was identified in the Lyme disease agents Borrelia burgdorferi, Borrelia garinii and Borrelia afzelii. The pore-forming protein of these species exhibits high sequence homology to Oms38 and similar biophysical properties, i.e. it forms pores of 50 pS in 1 M KCl. Interestingly, titration experiments revealed that this pore could be partly blocked by dicarboxylic anions, which means that this protein does not form a general diffusion pore but a channel with a binding-site specific for those compounds. Consequently, this porin was termed DipA, for “dicarboxylate-specific porin A”. In another set of experiments, it was shown that the porin P66 is present in both Lyme disease and relapsing fever species. Therefor, the outer membranes of the Lyme disease species Borrelia burgdorferi, Borrelia afzelii, Borrelia garinii and the relapsing fever species Borrelia duttonii, Borrelia recurrentis and Borrelia hermsii were closer investigated. Except of the P66 homologue of Borrelia hermsii P66 of all species was highly active in artificial lipid membranes, forming pores with huge single-channel conductances between 9 and 11 nS in 1 M KCl. Moreover, the channel diameter and the constitution of Borrelia burgdorferi P66 were investigated in detail. Therefor, the P66 single-channel conductance in the presence of different nonelectrolytes with known hydrodynamic radii was analyzed in black lipid bilayers. The effective diameter of the P66 channel lumen was determined to be ~1.9 nm. Furthermore, as derived from multi-channel experiments the P66-induced membrane conductance could be blocked by certain nonelectrolytes, such as PEG 400, PEG 600 and maltohexaose. Additional blocking experiments on the single-channel level revealed seven subconducting states and indicated a heptameric constitution of the P66 channel. This indication could be confirmed by Blue native PAGE analysis which demonstrated that P66 units form a complex with a corresponding mass of approximately 440 kDa. Taking together, this thesis describes detailed biochemical and biophysical investigations of both Lyme disease and relapsing fever Borrelia porins and represents an important step forward in understanding the outer membrane pathways for nutrient uptake of these strictly host-dependent, pathogenic spirochetes. Furthermore, it provides some knowledge of the outer-membrane protein composition of Borrelia spirochetes. A profound knowledge of surface-exposed proteins, such as porins, is one precondition for the production of a successful vaccine and the drug design against the two borrelian-caused diseases. KW - Porin KW - Membranproteine KW - Borrelia KW - Lyme-Borreliose KW - Rückfallfieber KW - Spirochäten KW - porin KW - membrane protein KW - Borrelia KW - Lyme disease KW - relapsing fever Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35158 ER -