TY - THES A1 - Wendel, Christoph T1 - Bestimmung des hochenergetischen Spektrums des Crab-Pulsars anhand eines Outer Gap-Modells T1 - Determining the Gamma-Ray Spectrum of the Crab Pulsar through an Outer Gap Model N2 - Im Rahmen eines selbst-konsistenten Outer-Gap-Modells der Pulsar-Magnetosphäre wurde die elektromagnetische sehr hochenergetische Strahlung des Crab-Pulsars simuliert. Dies wurde parallel anhand zweier verschiedener Fälle getan, die sich in den angenommenen Gleichungen für die elektrische Feldstärke und für den Krümmungsradius der magnetischen Feldlinien unterscheiden. Die Kinetik der geladenen Teilchen bei ihrer Propagation durch die Outer Gap wurde unter Einbeziehung von Krümmungsstrahlung, inverser Compton-Streuung und Triple Paarbildung betrachtet. Das theoretisch simulierte Spektrum wird mit von Fermi-LAT und von den MAGIC Teleskopen gemessenen Daten verglichen. N2 - In a self-consistent model of outer vacuum gaps of pulsar magnetospheres, the gamma-ray output of the Crab pulsar is determined and compared to observational data by the Fermi Large Area Telescope and the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes. Incorporating curvature radiation, inverse-Compton scattering and triplet pair production, the kinetics of the accelerated electrons are considered, energy losses are compared and the emerging spectra are computed. It is found that losses are dominated by curvature radiation emission. Triplet pair production may be relevant concerning particle multiplication and inverse-Compton up-scattering of the curvature photons is forming the spectral energy distribution at very high energies. KW - Neutronenstern KW - Crab-Nebel KW - Pulsar KW - Magnetosphäre KW - Synchrotronstrahlung KW - Krümmungsstrahlung KW - outer gap KW - Triplet Paar-Erzeugung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257191 ER - TY - THES A1 - Schleier, Domenik T1 - Using Photoionization to Investigate Reactive Boron Species and the Kinetics of Hydrocarbon Radicals T1 - Die Untersuchung von Reaktiven Borspezies und die Kinetik von Kohlenwassterstoffradikalen mittels Photoionization N2 - This thesis highlights the importance of isomer-selective approaches for the complete analysis of chemical processes. The method of choice is photoelectron/photoion coincidence spectroscopy, which allows simultaneous detection of electrons and ions coming from a single ionization event. Ionization techniques are sensitive and can record multiple species simultaneously, rendering them ideal tools to probe molecular transformations. Coupling these setups to synchrotron radiation allows one to analyze complex mixtures with isomer selectivity, based on ionization energies and vibrational structure in the cation, without any prior separation steps. Only few setups exist that can be used to gather these data, although their impact and applicability is growing steadily in various fields. For closed-shell species an easier and more widely used method is gas-chromatography, but most open shell species would not survive the separation process. Due to the reactivity of radicals they have to be created by selectively converting stable precursor molecules. Depending on the radical generation method different properties can be investigated ranging from thermodynamic data, over concentrations in high temperature environments, to chemical kinetics. The first part of this thesis deals with the determination of bimolecular rate constants. Isomeric hydrocarbon radicals were generated by a high intense UV light pulses and their kinetics with oxygen was measured. The pressure dependence of different isomers in the falloff region was compared to theoretical models, and their reactivity could be explained. The second part deals with boron containing compounds in various electronic situations. The corresponding precursors were successfully synthesized or could be bought. They were subjected to fluorine atoms in chemical reactors or destroyed pyrolytically at high temperatures. Most investigated species exhibited vibronic effects that could be elucidated using high level computations. N2 - Die vorliegende Arbeit lässt sich in zwei Unterkategorien gliedern. Sie befasst sich zum einen mit der isomerenselektiven Identifikation von hochreaktiven anorganischen Verbindungen. Zum anderen werden Ratenkonstanten für die Reaktionen verschiedener Kohlenwasserstoffradikale mit Sauerstoff ermittelt. Beide Bereiche sind durch die Frage der Energiespeicherung und -gewinnung in der Zukunft unmittelbar miteinander verbunden. Die Herausforderung reaktive Moleküle zu untersuchen, liegt oft darin sie in einer inerten Atmosphäre erzeugen zu müssen. Nur unter diesen Bedingungen hat ihre Reaktivität kaum Möglichkeiten sich zu entfalten. Hierzu wurden stabile Vorläufermoleküle in die Gasphase überführt und in einer verdünnten Umgebung möglichst selektiv in die gewünschte Radikalspezies überführt. Sowohl deren isomereselektive Identifikation als auch die Bestimmung der Ratenkonstanten wurde mittels Schwellenphotoelektronenspektroskopie durchgeführt. Mit Hilfe eines Photoelektron/Photoion Koinzidenz (PEPICO) Aufbaus konnten massenselektive Signale detektiert werden. Diese Methode benötigt eine Lichtquelle, die eine hohe Repetitionsrate aufweist und im VUV-Bereich komplett spektral durchstimmbar ist. Diese Voraussetzungen sind an Synchrotron-Strahlungsquellen verfügbar, weshalb die Experimente in dieser Arbeit an den entsprechenden Strahllinien an der SwissLightSource oder am Synchrotron SOLEIL durchgeführt wurden. Zur Unterstützung der experimentellen Daten wurden durch quantenchemische Rechnungen und Simulationen durchgeführt, aus denen eine klare isomerenselektive Zuordnung des jeweiligen Signals erfolgt. Die gesuchten Ratenkonstanten konnten mittels geeigneter Programme aus den Kinetikdaten extrahiert werden, wobei auch die Ratenkonstanten der Seitenreaktionen berücksichtigt wurden. KW - Biradikal KW - Kinetics KW - Spectroscopy KW - Photolysis KW - Radicals KW - Biradicals KW - Fotoionisation KW - Fotolyse KW - Synchrotronstrahlung KW - Synchrotron Radiation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242137 ER - TY - THES A1 - Reusch, Engelbert T1 - Photoionisation von Biradikalen mit Synchrotronstrahlung T1 - Photoionization of Biradicals with Synchrotron Radiation N2 - Die vorliegenden Arbeit behandelt VUV Valenz-Photoionisations-Experimente in der Gasphase. Zunächst wird die Photoionisation von stickstoffhaltigen Radikalen und deren Pyrolyseprodukten untersucht. Im Anschluss werden molekulare Biradikale betrachtet. Da in der Literatur bislang nur wenige solcher Biradikale als Intermediate experimentell zugänglich waren, war es das Ziel dieser Arbeit, neue reaktive Spezies dieser Substanzklassen in der Gasphase zu isolieren und deren Struktur, Eigenschaften und Reaktivität besser zu verstehen. Im Mittelpunkt stehen dabei Intermediate, die als echte Biradikale, Biradikaloide oder Triplett Carbene auftreten. Zu letzteren zählen das Methylbismut sowie die Pentadiinylidene. Biradikale bilden in Verbrennungsprozessen sehr effizient Ruß(vorläufer), was anhand des ortho-Benz-ins dargelegt wurde, indem dessen Pyrolyseprodukte charakterisiert und mögliche PAH-Bildungswege aufgezeigt wurden. Vakuum Flash Pyrolyse wurde verwendet, um in situ aus den geeigneten Vorläufermolekülen die radikalischen und biradikalischen Intermediate zu erzeugen. Während für biradikalische Zwischenstufen meist spezielle Verbindungen als Vorläufer synthetisiert werden müssen, waren die verwendeten Vorläufer für die stickstoffhaltigen Radikale kommerziell erhältlich. Die reaktiven Spezies wurden alle mittels monochromatischer VUV Synchrotronstrahlung an der Swiss Light Source in Villigen/ Schweiz ionisiert. Die Ionisationsereignisse wurden mit der Schwellenphotoelektronen-Photoionen-Koinzidenz (TPEPICO) Technik detektiert und ausgewertet. Anhand der resultierenden massenselektiven Schwellenphotoelektronenspektren wurden die Ionisierungsenergien der (Bi)radikale bestimmt und die Schwingungsstruktur der jeweiligen Kationen analysiert. Die erhaltenen Spektren und Daten wurden in Zusammenarbeit mit der theoretischen Chemie interpretiert. Wichtige Erkenntnisse • Es wurde die Ionisierungsenergie der 2-, 3- und 4-Picolylradikale auf 7.70\pm 0.02 eV, 7.59\pm 0.01 eV und 8.01\pm 0.01 eV bestimmt. Diese wurden in der Pyrolyse selektiv aus ihren zugehörigen Picolylaminen erzeugt. Zudem wurde analog zum Benzyl-Radikal für alle drei Radikale eine ausgeprägte Schwingungsprogression ermittelt, die der totalsymmetrischen Deformationsmode des aromatischen Rings entspricht. • Die Picolyl-Radikale dissoziieren in der Pyrolyse thermisch zu weiteren Produkten. Die Fragmentierung verläuft dabei isomerenunabhängig über ein stickstoffhaltiges Siebenringintermediat, dem Azepinyl-Radikal. Der Fragmentierungsmechanismus wurde mit dem von Benzyl verglichen. Die gewonnenen Erkenntnisse haben Relevanz für Verbrennungsprozesse, beispielsweise von Biokraftstoffen.Im ersten Schritt entstehen vier Isomere, das Cyclopenta-1,4-dien-1-carbonitril, das Cyclopenta-1,3-dien-1-carbonitril, das 2-Ethynyl-1H-pyrrol und das3-Ethynyl-1H-pyrrol mit den zugehörigen Ionisierungsenergien von 9.25\pm 0.02 eV, 9.14\pm 0.02 eV, 7.99\pm 0.02 eV und 8.12\pm 0.02 eV. Durch einen zweiten H-Verlust konnte das Cyanocyclopentadienyl-Radikal mit einer Ionisierungsenergie für die zwei niedrigsten Zustände im Kation mit 9.07\pm 0.02 eV (T0) und 9.21\pm 0.02 eV (S1) untersucht werden. Weitere Pyrolyseprodukte, deren Ionisierungsenergien bereits literaturbekannt sind und die bestätigt wurden, sind das Cyclopentadienyl-Radikal, das Cyclopenta-1,3-dien, das Propargyl-Radikal, das Penta-1,3-diin und das Cyanopropenyl. • Das ortho-Benz-in wurde pyrolytisch aus dem selbst synthetisierten Benzocyclobutendion erzeugt und ein Schwellenphotoelektronenspektrum frei von Störsignalen konnte aufgenommen werden. Mit Hilfe von Rechnungen aufCASPT2(11,14) Niveau, die neben dem elektronischen Übergang in den kationischen Grundzustand noch die Übergänge in zwei weitere angeregte kationische Zustände beinhalten, wurde die Ionisierungsenergie im Vergleich zu früheren Experimenten auf 9.51 eV revidiert. Eine verdrillte Geometrie für den kationischen Grundzustand konnte erstmals nachgewiesen werden. Zusätzlich wurden die offenkettigen Isomere cis- und trans-Hexa-1,5-diin-3-en im Spektrum detektiert und zugeordnet. • Die Auftrittsenergien aus der DPI des Vorläufermoleküls Benzocyclobutendion betragen für den ersten CO-Verlust 9.62\pm 0.05 eV und für den zweiten CO-Verlust 12.14\pm 0.10 eV. Damit konnte über einen thermochemischen Kreisprozess eine Bindungsdissoziationsenergie für die Ph-CO Bindung im Benzoylkation von 2.52 eV berechnet werden. • Verschiedenen Pyrolyseprodukte des ortho-Benz-ins, wie Ethin, Buta-1,3-diin, Benzol, Biphenylen und 2-Ethinylnaphthalin, werden entweder in bimolekularen Reaktionen gebildet oder ortho-Benz-in fragmentiert unimolekular zu diesen. Die beiden kompetitiven Reaktionspfade tragen zur PAH-Bildung des ortho-Benz-ins bei. • Die Triplett-Carbene Pentadiinyliden, Methylpentadiinyliden und Dimethylpentadiinyliden wurden als Pyrolyseprodukt aus ihren zugehörigen Diazovorläufern identifiziert und die Ionisierungsenergien mit 8.36\pm 0.03 eV, 7.77\pm 0.04 eV und 7.27\pm 0.06 eV bestimmt. Jede Methylierung stabilisiert folglich das Carben. Zusätzlich konnte ein weiteres C5H2 Isomer, das 3-(Didehydrovinyliden)cyclopropen, mit einer Ionisierungsenergie von 8.60\pm 0.03 eV charakterisiert werden. • Zwei bismuthaltige, reaktive Spezies, das Dimethylbismut-Radikal\cdot BiMe2 (IE = 7.27\pm 0.04 eV) und das Methylbismut-Carben :BiMe(IE = 7.88\pm 0.02 eV) wurden als Pyrolyseprodukte aus dem BiMe3 identifiziert. Beide Verbindungen zeigen eine ausgeprägte Schwingungsstruktur, die der Bi-C Streckschwingung zugeordnet wurde. Weiterhin wurden elementares Bismut Bi und das Bismut-Dimer Bi2 nachgewiesen. • Die homolytische Dissoziation der ersten Me2Bi-CH3 Bindung im BiMe3 wurde untersucht und eine BDE von 210\pm 7 kJ/ mol bestimmt. Sie liegt um +15 % bzw. +28 kJ/ mol über dem aus der Literatur abgeschätzten Wert. N2 - The present thesis includes VUV valence shell photoionzation experiments in the gas phase. First, the photoionization of nitrogen containing radicals and their pyrolysis products was investigated. Afterwards, the focus was directed on molecular birad- icals. Since in literature so far only little experimental information exists on this class of compounds as reactive intermediates in gas phase, it was the intention of this work to understand the structure, the properties and the reactivity of them. In additon to the " true\ biradicals, intermediates like biradicaloids or triplet carbenes can be assigned to this class of compounds, the latter including the organometallic bismuthinidene :BiMe, pentadiynylidene and its methyl-substituted derivates. In combustion processes biradicals tend to form soot, a major environmental concern. In this context ortho-benzyne and its pyrolysis products were characterized and a possible PAH formation was shown. Vacuum ash pyrolysis was used to generate radicals and biradicals in situ from suitable precursors. While for the biradicals the precursors were compounds that had to be synthesized, for the nitrogen containing intermediates they were commercially available. The reactive species were ionized in photoionization experiments by monochromatic VUV synchrotron radiation at the Swiss Light Source in Villigen/ Switzerland. The ionization events were analyzed by using the threshold photoelectron photoion coincidence technique (TPEPICO). Based on the recorded ms-TPE spectra, ionization energies of the (bi)radicals were determined and the vibrational progression of the corresponding cations was charac- terized. Furthermore, in cooperation with the quantum chemistry the experimental spectra and results were interpreted and compared with calculated data sets. KW - Biradikal KW - Fotoionisation KW - Synchrotronstrahlung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240098 ER - TY - THES A1 - Holzmeier, Fabian T1 - Photoionization of Nitrogen-Containing Reactive Molecules with Synchrotron Radiation T1 - Photoionisation von stickstoffhaltigen reaktiven Molekülen mit Synchrotronstrahlung N2 - The photoionization of several nitrogen-containing reactive intermediates relevant in combustion processes was investigated in the gas phase employing VUV synchrotron radiation. The intermediates were either freshly prepared and stored under cryogenic temperatures during the experiment or generated in situ by vacuum flash pyrolysis of suitable precursor molecules. The iPEPICO (imaging photoelectron photoion coincidence) setups of the VUV beamlines at the Swiss Light Source and Synchrotron SOLEIL were then used to record mass-selected threshold photoelectron (TPE) spectra. TPE spectra reveal the ionization energy and vibrational structure in the cationic states can often be resolved, which enables to distinguish different isomers. Accurate ionization energies for the radicals carbonyl amidogen, pyrrolyl, and 3-picolyl, and for the closed shell molecules isocyanic acid and cyanovinylacetylene were obtained. The analysis of the dissociative photoionization of the pyrolysis precursors enables in some cases to retrieve thermochemical data. Beyond, the absolute photoionization cross section of the cyclic carbene cyclopropenylidene was determined, NEXAFS and normal Auger spectra of isocyanic acid were recorded and analyzed at the O1s, N1s, and C1s edges, and the dissociative photoionization and pyrolysis of 1,4-di-tert-butyl-1,4-azaborinine was studied. N2 - Die Photoionisiation von stickstoffhaltigen reaktiven Intermediaten, die in Verbrennungsprozessen vorkommen, wurde in der Gasphase mit VUV Synchrotronstrahlung untersucht. Die Intermediate wurden entweder unmittelbar vor dem Experiment hergestellt und während des Experiments bei sehr niedrigen Temperaturen gehalten oder in situ durch Vakuum Flash Pyrolyse eines geeigneten Vorläufermoleküls erzeugt. Massenselektive Schwellenphotoelektronen(TPE)-Spektren wurden an den iPEPICO (imaging photoion photoelectron coincidence) Setups der VUV Strahllinien der Swiss Light Source und des Synchrotrons SOLEIL aufgenommen. Die Ionisierungsenergie kann in TPE-Spektren bestimmt werden und eine Auflösung von Schwingungsstruktur im Kation ist in vielen Fällen möglich, wodurch verschiedene Isomere unterschieden werden können. Verlässliche Ionisierungsenergien konnten für die Radikale Carbonylamidogen, Pyrrolyl und 3-Picolyl sowie für die geschlossenschaligen Moleküle Isocyansäure und Cyanovinylacetylen erhalten werden. Die Analyse der dissoziativen Photoionisation der Pyrolysevorläufer eröffnet in manchen Fällen Zugang zu thermochemischen Daten. Darüber hinaus wurde der absolute Photoionisationsquerschnitt des cyclischen Carbens Cyclopropenyliden bestimmt, wurden die NEXAFS und nicht-resonanten Auger Spektren von Isocyansäure an der O1s, N1s und C1s Kante aufgenommen und analysiert und die dissoziative Photoionisation und Pyrolyse von 1,4-di-tert-butyl-1,4-azaborinin untersucht. KW - Dissoziative Photoionisation KW - Synchrotronstrahlung KW - Ultraviolett-Photoelektronenspektroskopie KW - Pyrolyse KW - Photoelektron-Photoion-Koinzidenz KW - Fotoionisation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127763 ER - TY - THES A1 - Fischer, Kathrin Helena T1 - Analyse der chemischen Reaktionen ungesättigter Verbindungen mit FEL- und Synchrotronstrahlung T1 - Analysis of chemical reactions of unsaturated compounds with FEL and synchrotron radiation N2 - Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberflächeneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden dafür bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie über weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und ungesättigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasförmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmomentänderung ein gutes Beispiel für ähnliche Verbindungen ist. Trotz der kleinen Änderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zusätzlich wurden die Isomerisierungsbarrieren für den Triplett- und Singulett-Übergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergewöhnlich war die Exklusivität dieser Produkte. Somit müssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht geklärt wurde. Somit müssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasförmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch fünf angeregte Zustände beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in Übereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, während der Borligand auch bei 15 eV noch nicht dissoziierte. Von den fünf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Berücksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich stärker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Moleküle sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgeklärt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zukünftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu größeren Molekülen oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zusätzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage für zukünftige Experimente gelegt. N2 - Brilliant light sources like free electron lasers (FEL) and synchrotrons can be used to investigate crystal structures, reactions, or surface properties. These light sources are applied due to their high photon flux and broad wavelength tunability. A free electron laser was employed in the presented work to identify isomers of hydrocarbon radicals and carbenes. By contrary, the photoionization properties of borylene and unsaturated radicals were observed using synchrotron radiation. The important results will be summarized in the following. The first experiment performed at the FEL facility was a test with allyl radicals. Allyl was a good test candidate for other hydrocarbon radicals due to its small change in the dipole moment and low density in the gas phase. Despite of the small change in the dipole moment and particle density a satisfying IR spectrum could be obtained with the IR-UV double resonance method and the observed bands were assigned according to literature. The 3-trifluoromethyl-3-phenyl-carbene (TFPC) was pyrolytically generated from 3-trifluoromethyl-3-phenyl-diazirine. A high percentage of the formed carbene rearranged to trifluorostyrene in the pyrolysis. In addition to the main product trifluorostyrene triplet TFPC was found as a minor product and identified by a comparison with computed IR spectra. Furthermore the barriers for the triplet and singlet transition state were calculated. As a last project with the FEL it was shown that the radicals 1-phenylpropargyl and 3-phenylpropargyl are distinguishable by IR spectroscopy and do not isomerize into each other or indenyl. Additionally, identical dimerisation products are formed in the observed mass channels m/z = 230 and 228, p-terphenyl and 1-phenylethynylnaphthalene (1PEN). This exclusive appearance of just one isomer in each mass channel instead of a broad variety was a striking discovery. Thus, their formation mechanism must be kinetical favored. Since the masses m/z = 230 and 228 were also found in a mass spectrometric study of benzene and acethylene, where their structures were not identified experimentally. The dimerization products p-terphenyl and 1PEN must be important intermediates in the soot formation. The first compound examined with synchrotron radiation was NTCDA. Its threshold photoelectron spectrum was recorded and analyzed applying the TPEPICO technique. The adiabatic ionization energy (IE(ad)) of NTCDA was determined as 9.66 eV. Five additional excited states were observed and assigned by quantum mechanical computations. In a similar project the IE(ad) of the cycloheptatienyl radical (tropyl) was identified to be 6.23 eV. With the help of a Franck-Condon simulation the two observed progressions were assigned to ν16+, a CC stretching and a combination of ν2+, an ringbreathing, and ν16+. Furthermore, the first excited triplet and singlet states were assigned according to literature. A shoulder at 9.85 eV might be the second triplet state or an excited vibration, while the most intense peak appears at 11.6 eV. A distinct assignment of the latter band was not possible employing computations. At approximately 10.55 eV the tropyl ion begins to photoionize dissociatively to form the cyclopentadienyl ion. This value is in good agreement with the appearance energy calculated using a thermochemical cycle. The IE(ad) of the borylene complex [(CO)5CrBN(SiMe3)2] was determined as 7.2 eV. With rising photon energy all five CO-ligands dissociate sequentially, while the boron ligand stays in place. Even at the highest measured energy value of 15 eV the boron ligand did not dissociate. The 0 K appearance energies of the fragments of this sequential CO loss were identified with a fitting procedure including the kinetic shift. Using a simple thermodynamic cycle the binding energies of the cationic complex were obtained. The higher second bond dissociation energy in comparison with the first one indicates a strong trans effect of the borylene ligand. Thermodynamic properties like the adiabatic ionization energy, the appearance energy of the fragments and binding energies were determined. Additionally, different isomers and their dimerization products were identified by their measured IR spectrum. With these experiments the structure of the dimerization products p-terphenyl and 1PEN, two important intermediates in soot formation, were resolved. These dimerization products initialize future questions: What will happen with p-terphenyl and 1PEN after their formation? Will they be involved in a subsequent chemical reaction or start to accumulate? These questions and whether the phenylpropargyl radicals are formed in a reaction of benzene with propargyl radicals should be answered in the future. The obtained results identified an important step in the mechanism of soot production and are the basis for further experiments. KW - Synchrotronstrahlung KW - Freie-Elektronen-Laser KW - Ungesättigte Verbindungen KW - Fotoionisation KW - synchrotron radiation KW - free electron laser KW - infrared KW - photoionization KW - gas phase KW - Fel KW - Infrarot KW - Photoionisation KW - Polycyclische Aromaten KW - Reaktive Zwischenstufe KW - Isomer KW - Gasphase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79108 ER - TY - THES A1 - Hemberger, Patrick T1 - Photoionisationsstudien an Radikalen und Carbenen mit VUV-Synchrotronstrahlung T1 - Photoionization Studies on Radicals und Carbenes mit VUV Synchrotron Radiation N2 - Die vorliegende Dissertation untersucht reaktive Intermediaten, speziell Radikale und Carbene und deren Verhalten bei Photoionisation mit VUV-Synchrotronstrahlung. Diese instabilen Verbindungen wurden durch Pyrolyse von teils selbstsynthetisierter Vorläufern in einem kontinuierlichen Molekularstrahl erzeugt und mittels der TPEPICO-Spektroskopie untersucht. Die wichtigsten Ergebnisse dieser Arbeit werden im Anschluss hervorgehoben. Drei Radikale der Zusammensetzung C9H7, Indenyl, 1- und 3-Phenylpropargyl wurden aus ihren bromierten Vorläufern synthetisiert und ihre Ionisierungsenergien bestimmt. Die Frage ob es möglich ist alle drei Radikale hinsichtlich ihrer IE zu unterscheiden und dadurch eine Identifikation in einer Flamme möglich wird, konnte beantwortet werden. Indenyl und 3-Phenylpropargyl besitzen Ionisierungsenergien von 7.53 und 7.20 eV, was eine Erkennung in Flammen prinzipiell möglich macht. Für 1-Phenylpropargyl wurde eine IEad von 7.4 eV gemessen, was eine selektive Identifikation erschwert. Die Messwerte wurden durch quantenchemischen Rechnungen überprüft und sind mit diesen in guter Übereinstimmung. Die Photoionisation von Cyclopropenyliden (IEad = 9.17 ± 0.015 eV) wurde untersucht,wobei eine niederenergetische Bande dem Propargylen (IEad = 9.02 ± 0.02 eV), dem HCCCH Isomer der Zusammensetzung C3H2, zugeordnet werden konnte. Die Schwingungsstruktur des Spektrums konnte erfolgreich simuliert und dadurch die Geometrie des Kations ermittelt werden. Als Nebenprodukt im Molekularstrahl wurde Chlorcyclopropenyliden (IEad = 9.17 ± 0.02 eV) durch seine Schwingungsprogression identifiziert. Die Analyse der dissoziativen Photoionisation gestaltet sich als schwierig, da sowohl c-C3H2 als auch c-C3HCl im relevanten Energiebereich fragmentieren können und die Anwesenheit von HCl die Auswertung ebenfalls erschwert. Ein Lösungsvorschlag für dieses Problem wurde ebenfalls aufgezeigt. Der Einfluss von Substitutionen auf die IE wurde am Beispiel des Propargylradikals und seiner zwei bromierten Analoga erforscht. Dabei wurde eine Rotverschiebung (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) gemessen. Diese ist auf den elektronenspendenden Charakter des Broms begründet. Beide Brompropargylradikale lassen sich anhand ihrer IE unterscheiden. Die Schwelle zur dissoziativen Photoionisation von C3H2Br zu C3H2 wurde mit 10.1 eV ermittelt, wobei verschiedene Kanäle für diese Reaktion in Frage kommen. Schwingungsaktivität konnte im TPE-Spektrum des Propargylradikals ebenfalls verzeichnet und die v3 +-Mode mit 1950 cm-1 ermittelt werden. Als letztes Projekt stand die Photoionisation des t-Butyl im Fokus, da teils widersprüchliche Messwerte für die IEad in der Literatur publiziert sind. Es konnte ein Wert von 6.75 eV ± 0.03 eV gemessen werden. Die Schwierigkeit bei diesem Experiment ist die Geometrieänderung während der Ionisierung, da das Radikal pyramidal und das Kation eine planare Struktur im C-Gerüst besitzt. Die Grenzen der angewendeten Methoden wurden an diesem Beispiel deutlich gemacht. Zur vollständigen Charakterisierung wurden auch die Vorläufer genau analysiert, da diese durch dissoziative Photoionisation (DPI) Fragmentionen bilden, welche die gleiche Masse besitzen wie die zu untersuchenden Radikale und Carbene. Aus diesen Ergebnissen konnten Bindungsenergien berechnet werden. Von allen untersuchten reaktiven Intermediaten konnten die Ionisierungsenergien mit einer Genauigkeit von ± 20 meV ermittelt werden. Es wurde gezeigt, dass sogar Isomere mit gleicher Molekülmasse unterscheidbar sind. Diese Daten lassen sich verwenden um reaktive Zwischenprodukte in Flammen zu identifizieren. Die Identifizierung ermöglicht es dann geeignete Modelle für Verbrennungsprozesse zu konstruieren oder vorhandene zu verbessern. Diese könnten wiederum helfen die Ruß- und PAK-Bildung besser zu verstehen. Die Ziele dieser Dissertation konnten somit erreicht werden. Massenspektren, welche in Flammen durch VUV-Synchrotronstrahlung aufgenommen wurden, beherbergen eine große Fülle an größeren reaktiven Intermediaten wie beispielsweise das Fluorenyl oder das Biphenylmethylradikal. Deren Ionisation ist bislang nur sehr vage erforscht und wäre deshalb ein interessantes Projekt um diese Arbeit fortzuführen. N2 - This thesis examines reactive intermediates, especially radicals and carbenes and their behavior at photoionization with VUV-synchrotron radiation. Those unstable compounds were produced by pyrolysis of self-synthesizes precursors in a continuous molecular beam and studied by the TPEPICO spectroscopy. The most important results of this work are highlighted below. Three radicals of the composition C9H7, Indenyl, 1- and 3-phenylpropargyl, were synthesized from brominated precursors and their ionization energies were determined. The question, whether these three radicals can be distinguished by their ionization energy and therefore identified in a combustion flame, was answered. Indenyl and 3-phenylpropargyl exhibit ionization energies of 7.53 and 7.20 eV, which make a distinction possible. For 1-phenylpropargyl an IEad of 7.4 eV was measured, which complicates an selective identification. The measurements were also verified by quantum chemical calculations and are in good agreement. The photoionization of cyclopropenylidene (IEad = 9.17 ± 0.015 eV) was reexamined and and a low-energy band was assigned to propargylene (IEad = 9.02 ± 0.02 eV), which is the HCCCH isomer of the composition C3H2. The vibrational structure of the spectrum of c-C3H2 was successfully simulated and the cationic geometry was also determined. As a by-product chlorocyclopropenylidene (IEad = 9.17 ± 0.015 eV) was found and assigned due to its vibrational progression. The analysis of the dissociative photoionization is difficult, because both c-C3H2 and c-C3HCl are able to fragment in the relevant energy range and the presence of HCl complicates the analysis too. A solution of this problem was also mentioned. The influence of substituents on the IE was studied, using the propargyl radical and its two brominated analogs as an example. A redshift (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) was measured upon Br substitution. It originates from the electron-donating character of the bromine. Both bromopropargyl radicals can be distinguished by their IE. The threshold of dissociative photoionization of C3H2Br was determined to be 10.1 eV, but several channels can produce the C3H2+ fragment. Vibrational activity was found in the TPE spectrum of the propargyl radical and the v3 + mode was identified (1950 cm-1) as well. As a last project the photoionization of the t-butyl was brought into focus, because partly inconsistent measurements of the IEad are published in the literature. A value of 6.75 ± 0.03 eV was measured in this study. The challenge in experiments on this radical is the huge change in geometry, because the neutral is pyramidal while the cation has a planar carbon framework. The limits of the utilized methods were demonstrated using this example. For a complete characterization the precursors were examined too, because the fragment ions, produced by dissociative photoionization (DPI), could falsely be assigned to the radical or carbene. From these results binding energies were calculated additionally. The ionization energies of all examined reactive intermediates could be determined with an accuracy of ± 20 meV. It was shown that even isomers of the same molecular mass are distinguishable. This data can be used to identify reactive molecules in flames. The identification makes it possible to construct reasonable models for combustion processes or to improve available ones. These models could help to improve the understanding of soot and PAH formation. Therefore the aims of this thesis were achieved. Mass spectra recorded in flames by VUV-synchrotron radiation contain a variety of reactive intermediates for example fluorenyl and biphenylmethyl radicals. Their ionization is only vaguely investigated und therefore an interesting project to continue this work. KW - Photoionisation KW - Carbene KW - Synchrotronstrahlung KW - Radikal KW - TPES KW - PES KW - Reaktive Intermediate KW - reactive intermediates KW - photoionization KW - radicals KW - carbenes KW - threshold photoelectron photoion coincidence Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56980 ER - TY - THES A1 - Grimm, Michael T1 - Aufladungsexperimente an gespeicherten Nanopartikeln mit Synchrotronstrahlung T1 - Charging experiments on trapped nano-particles using synchrotron radiation N2 - Gegenstand dieser Arbeit ist die Untersuchung von gespeicherten Nanopartikeln mit weicher Röntgenstrahlung. Dafür wurde eine neue Apparatur aufgebaut. In dieser befindet sich ein dreidimensionaler elektrodynamischer Quadrupolspeicher, mit dem die positiv geladenen Nanopartikel berührungsfrei und ortsfest gespeichert werden. Mit Hilfe eines Streulichtnachweises werden die Eigenbewegungen der Partikel gemessen und daraus das Ladungs- zu Masseverhältnis ermittelt. Durch gezielte Umladung können die absolute Ladung und die Masse der Partikel mit hoher Genauigkeit bestimmt werden. Die gespeicherten Partikel wurden mit Synchrotronstrahlung am Elektronenspeicherring BESSY II untersucht. Bei niedrig geladenen Partikeln wurden Aufladungsexperimente mit variabler Photonenenergie durchgeführt. Dabei kann die Emission von einzelnen Elektronen beobachtet werden. Die totale Sekundärelektronenausbeute wurde für verschiedene Photonenenergien ermittelt. Sie gleicht den Werten, die durch Messungen mit Elektronenbeschuss bekannt sind. Die Partikel wurden weiterhin bis zum maximal erreichbaren Ladungszustand aufgeladen. Dieser Gleichgewichtszustand liegt unterhalb der theoretischen Erwartungen. Bei den hochgeladenen Partikeln wurden nach Abschalten der Synchrotronstrahlung Entladevorgänge beobachtet, die für das verminderte Ladungsgleichgewicht verantwortlich sind. Die Entladung wird als Ionen-Feldemission interpretiert, möglicherweise hervorgerufen durch den elektrischen Durchschlag im Teilchenmaterial. Das Aufladungsverhalten der Partikel bei verschiedenen Ladungszuständen wurde mit Hilfe von Messungen an der O 1s-Kante untersucht. Bei niedrigen Ladungszuständen liefert der Ladestrom die bekannten Röntgenabsorbtionsstrukturen von Siliziumdioxid. Stark geladene Partikel werden dagegen vor allem im Bereich der resonanten O 1s-Anregung durch schnelle Augerelektronen aufgeladen, während Photoelektronen aus dem O 1s-Kontinuum nicht mehr zur Aufladung beitragen. Deren kinetische Energie ist zu gering, um dem Coulombfeld des Partikels zu entkommen. N2 - Subject of this thesis is the investigation of single trapped nanoparticles using soft X-rays. For this purpose a new apparatus has been developed and characterized. The heart of this apparatus is a three-dimensional electrodynamic quadrupole trap that allows us to store charged nanoparticles well located and without any contact to a substrate. The detection of scattered light, which is modulated by the secular motion frequencies of the stored particle, is used to derive the charge-to-mass ratio. The determination of changes in the charge state due to electron emission is used to determine the absolute charge and mass with high accuracy. The particles were studied using synchrotron radiation at the electron storage ring BESSY II. A set of charging experiments were performed, where particles at low charge state were irradiated with different photon energies in the soft X-ray regime. In these experiments the emission of single electrons is observed. The total secondary-electron emission yield is determined at several photon energies. The values are comparable to the secondary emission after electron impact. Other experiments were performed at highest achievable charge state of the particles. This equilibrium state was found to be far below theoretical predictions. For highly charged particles we found a discharge current after the illumination with synchrotron radiation is terminated. This current is responsible for the low equilibrium charge state. The discharge is assumed to result from ion field emission potentially due to the electric breakdown in the particle material. Charging curves at different charges states of the particle in the regime of the oxygen 1s-edge were recorded. At low charge states the characteristic X-ray absorption fine structure of silicon dioxide is observed. Highly charged particles are efficiently charged by resonant Auger processes in the regime of the resonant O 1s-excitation, whereas there is no charging in the regime of the O 1s-continuum. Evidently, the kinetic energy of these electrons is too small to escape from the attractive Coulomb field of the particle. KW - Nanopartikel KW - Aufladung KW - Synchrotronstrahlung KW - Aufladung KW - Entladung KW - Falle KW - Nanopartikel KW - Synchrotronstrahlung KW - charging KW - discharge KW - trap KW - nano-particle KW - synchrotron radiation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13188 ER -