TY - THES A1 - Zdziarski, Jaroslaw Maciej T1 - Bacterial Genome Plasticity and its Role for Adaptation and Evolution of Asymptomatic Bacteriuria (ABU) Escherichia coli Strains T1 - Über die Bedeutung der bakteriellen Genomplastizität für die Adaptation und Evolution asymptomatischer Bakteriurie (ABU) Escherichia coli Isolate N2 - Asymptomatic bacteriuria (ABU) represents the long term bacterial colonization of the urinary tract, frequently caused by Escherichia coli (E. coli), without typical symptoms of a urinary tract infection (UTI). To investigate characteristics of ABU E. coli isolates in more detail, the geno- and phenotypes of eleven ABU isolates have been compared. Moreover, consecutive in vivo re-isolates of the model ABU strain 83972 were characterized with regard to transcriptomic, proteomic and genomic alterations upon long term in vivo persistence in the human bladder. Finally, the effect of the human host on bacterial adaptation/evolution was assessed by comparison of in vitro and in vivo-propagated strain 83972. ABU isolates represent a heterologous group of organisms. The comparative analysis of different ABU isolates elucidated the remarkable genetic and phenotypic flexibility of E. coli isolates. These isolates could be allocated to all four major E. coli phylogenetic lineages as well as to different clonal groups. Accordingly, they differed markedly in genome content, i.e., the genome size as well as the presence of typical UPEC virulence-associated genes. Multi locus sequence typing suggested that certain ABU strains evolved from UPEC variants that are able to cause symptomatic UTI by genome reduction. Consequently, the high E. coli genome plasticity does not allow a generalized view on geno- and phenotypes of individual isolates within a clone. Reductive evolution by point mutations, DNA rearrangements and deletions resulted in inactivation of genes coding for several UPEC virulence factors, thus supporting the idea that a reduced bacterial activation of host mucosal inflammation promotes the ABU lifestyle of these E. coli isolates. Gene regulation and genetic diversity are strategies which enable bacteria to live and survive under continuously changing environmental conditions. To study adaptational changes upon long term growth in the bladder, consecutive re-isolates of model ABU strain 83972 derived from a human colonisation study and from an in vitro long term cultivation experiment were analysed with regard to transcriptional changes and genome rearrangements. In this context, it could be demonstrated that E. coli, when exposed to different host backgrounds, is able to adapt its metabolic networks resulting in an individual bacterial colonisation strategy. Transcriptome and proteome analyses demonstrated distinct metabolic strategies of nutrients acquisition and energy production of tested in vivo re-isolates of strain 83972 that enabled them to colonise their host. Utilisation of D-serine, deoxy- and ribonucleosides, pentose and glucuronate interconversions were main up-regulated pathways providing in vivo re-isolates with extra energy for efficient growth in the urinary bladder. Moreover, this study explored bacterial response networks to host defence mechanisms: The class III alcohol dehydrogenase AdhC, already proven to be involved in nitric oxide detoxification in pathogens like Haemophilus influenzae, was shown for the first time to be employed in defending E. coli against the host response during asymptomatic bacteriuria. Consecutive in vivo and in vitro re-isolates of strain 83972 were also analysed regarding their genome structure. Several changes in the genome structure of consecutive re-isolates derived from the human colonisation study implied the importance of bacterial interactions with the host during bacterial microevolution. In contrast, the genome structure of re-isolates from the in vitro long term cultivation experiment, where strain 83972 has been propagated without host contact, was not affected. This suggests that exposure to the immune response promotes genome plasticity thus being a driving force for the development of the ABU lifestyle and evolution within the urinary tract. N2 - Asymptomatische Bakteriurie (ABU) stellt eine bakterielle Infektion der Harnblase über einen langen Zeitraum dar, die häufig von Escherichia coli hervorgerufen wird, ohne dass typische Symptome einer Harnwegsinfektion auftreten. Um die Charakteristika von ABU E. coli Isolaten genauer zu untersuchen, wurden die Geno- und Phänotypen von 11 ABU-Isolaten verglichen. Außerdem wurden in mehreren aufeinanderfolgenden in vivo-Reisolaten des Modell-ABU Stammes 83972 die Veränderungen im Transkriptom, Proteom und Genom während einer langfristigen Persistenz in der menschlichen Blase charakterisiert. Schließlich wurde der Effekt des menschlichen Wirtes auf die bakterielle Adaptation durch einen Vergleich von in vitro- mit in vivo-kultivierten Stämmen abgeschätzt. ABU-Isolate stellt eine heterogene Gruppe von Organismen dar. Diese können den vier phylogenetischen Hauptgruppen von E. coli sowie unterschiedlichen klonalen Gruppen zugeordnet werden. Dementsprechend unterscheiden sie sich erheblich bezüglich der Zusammensetzung des Genomes, der Genomgröße und auch der Ausstattung mit UPEC-typischen Virulenz-assoziierten Genen. Multi-Lokus-Sequenz-Typisierung legt nahe, dass bestimmte ABU Stämme sich durch Genomreduktion aus UPEC Stämmen entwickelt haben, die eine Harnwegsinfektion mit charakteristischen Symptomen auslösen konnten. Folglich erlaubt die hohe Genomplastizität von E. coli keine generalisierte Betrachtung einzelner Isolate eines Klons. Genomreduktion über Punktmutationen, Genom-Reorganisation und Deletionen resultierte in der Inaktivierung einiger Gene, die für einige UPEC Virulenz-Faktoren kodieren. Dies stützt die Vorstellung, dass eine verminderte bakterielle Aktivierung der Entzündung der Wirtsschleimhaut den Lebensstil von ABU (bei diesen E. coli-)Isolaten fördert. Genregulation und genetische Diversität sind Strategien, die es Bakterien ermöglichen unter sich fortlaufend ändernden Bedingungen zu leben bzw. zu überleben. Um die anpassungsbedingten Veränderungen bei einem langfristigen Wachstum in der Blase zu untersuchen, wurden aufeinanderfolgende Reisolate, denen eine langfristige in vivo-Kolonisierung im menschlichen Wirt beziehungsweise eine in vitro-Kultivierung vorausgegangen ist, im Hinblick auf Veränderungen Genexpression und Genomorganisation analysiert. In diesem Zusammenhang konnte gezeigt werden, dass E. coli in der Lage ist, seine metabolischen Netzwerke verschiedenen Wachstumsbedingungen anzupassen und individuelle bakterielle Kolonisierungsstrategien entwickeln kann. Transkriptom- und Proteom-Analysen zeigten verschiedene metabolische Strategien zur Nährstoffbeschaffung und Energieproduktion bei untersuchten in vivo-Reisolaten vom Stamm 83972, die es ihnen ermöglichen, den Wirt zu kolonisieren. Das Zurückgreifen auf D-Serin, Deoxy- und Ribonucleoside sowie die bidirektionale Umwandlung zwischen Pentose und Glucuronat waren hoch-regulierte Stoffwechselwege, die die in vivo-Reisolate mit zusätzlicher Energie für ein effizientes Wachstum in der Blase versorgen. Zudem wurden in dieser Studie die Netzwerke für eine Reaktion auf Abwehrmechanismen des Wirtes erforscht: Erstmals wurde hier die Rolle der Klasse-III-Alkoholdehydrogenase AdhC, bekannt durch ihre Bedeutung bei der Entgiftung von Stickstoffmonoxid, bei der Wirtsantwort während einer asymptomatischen Bakteriurie gezeigt. Aufeinanderfolgende in vivo- und in vitro-Reisolate vom Stamm 83972 wurden ebenfalls bezüglich ihrer Genomstruktur analysiert. Einige Veränderungen in der Genomstruktur der aufeinanderfolgenden Reisolate, die von einer humanen Kolonisierungsstudie stammen, implizieren die Bedeutung einer Interaktion der Bakterien mit dem Wirt bei der Mikroevolution der Bakterien. Dagegen war die Genomstruktur von Reisolaten eines langfristigen in vitro-Kultivierungsexperiments, bei dem sich der Stamm 83972 ohne Wirtskontakt vermehrt hat, nicht von Veränderungen betroffen. Das legt nahe, dass die Immunantwort eine Genomplastizität fördert und somit eine treibende Kraft für den ABU Lebensstil und die Evolution im Harnwegstrakt ist. KW - Escherichia coli KW - Evolution KW - Virulenz KW - Molekulargenetik KW - Asymptomatic Bacteriuria KW - Infection KW - UTI KW - UPEC Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32879 ER - TY - THES A1 - Klengel, Torsten T1 - Molekulare Charakterisierung der Carboanhydrase Nce103 im Kontext des CO2 induzierten Polymorphismus in Candida albicans T1 - Molecular characterisation of the carbonic anhydrase Nce103 in the context of carbon dioxide induced polymorphism in Candida albicans N2 - Die Detektion von Umweltsignalen und die gezielte zelluläre Reaktion ist eine zentrale und für das Überleben aller Lebewesen essentielle Fähigkeit. Candida albicans, als dominierender humanpathogener Pilz, ist hochgradig verschiedenen biochemischen und physikalischen Umweltbedingungen ausgesetzt, welche sowohl die Zellmorphologie als auch die Virulenz dieses Erregers beeinflussen. In der vorliegenden Arbeit wurde der Einfluss von Kohlendioxid, als ubiquitär vorkommendes Gasmolekül, auf die Zellmorphologie und Virulenz untersucht. Erhöhte Konzentrationen von Kohlendioxid stellen ein äußerst robustes Umweltsignal dar, welches die morphologische Transition vom Hefewachstum zum hyphalen Wachstum, einem Hauptvirulenzfaktor, in Candida albicans stimuliert. In diesem Zusammenhang wurde die Rolle der putativen Carboanhydrase Nce103 durch die Generation von knock – out Mutanten untersucht. Die Disruption von NCE103 in C. albicans führt zu einem Kohlendioxid – abhängigen Phänotyp, welcher Wachstum unter aeroben Bedingungen (ca. 0,033% CO2) nicht zulässt, jedoch unter Bedingungen mit einem erhöhten CO2 Gehalt von ca. 5% ermöglicht. NCE103 ist also für das Wachstum von C. albicans in Wirtsnischen mit aeroben Bedingungen essentiell. Durch Untersuchungen zur Enzymkinetik mittels Stopped – flow wurde in dieser Arbeit gezeigt, dass Nce103 die Funktion einer Carboanhydrase erfüllt. Die biochemische Funktion dieser Carboanhydrase besteht in der Fixation von CO2 bzw. HCO3ˉ in der Zelle zur Unterhaltung der wesentlichen metabolischen Reaktionen. Weiterhin konnte gezeigt werden, dass die Induktion hyphalen Wachstums durch CO2 in C. albicans nicht durch den Transport von CO2 mittels des Aquaporins Aqy1 beeinflusst wird. CO2 bzw. HCO3ˉ aktiviert in der Zelle direkt eine Adenylylcyclase (Cdc35), welche sich grundlegend von den bisher gut charakterisierten G-Protein gekoppelten Adenylylcylasen unterscheidet. Die Generation von cAMP beeinflusst in der Folge direkt die Transkription hyphenspezifischer Gene und nachfolgend die morphologische Transition vom Hefewachstum zum elongierten, hyphalen Wachstum. Dieser Mechanismus konnte sowohl in Candida albicans als auch in Cryptococcus neoformans nachgewiesen werden, was auf einen panfungal konservierten Signaltransduktionsmechanismus schliessen lässt. Die Inhibition dieser spezifischen Kaskade eröffnet neue Ansätze zur Entwicklung spezifischer antimykotischer Wirkstoffe. N2 - Detection of environmental signals and subsequently directed reaction is essential for the survival of all living organisms. Candida albicans, as the predominant human fungal pathogen is exposed to severely different physical and chemical conditions, which influence cell morphology as well as virulence in human. In the present work, the influence of carbon dioxide as ubiquitous gaseous molecule on virulence and cell morphology was analysed. Elevated concentrations of carbon dioxide are a robust signal to induce the morphological transition from yeast growth to an elongated hyphal growth form, which is believed to be one of the main virulence factors in Candida albicans. The role of the putative carbonic anhydrase Nce103p in carbon dioxide signalling is reviewed by generating knockout mutant strains, which exhibited a carbon dioxide dependent phenotype. Growth under aerobic conditions (0,033 % carbon dioxide) is inhibited but feasible in 5% carbon dioxide. Therefore, Nce103p is essential for growth in host niches with aerobic conditions. Analysis of the biochemical properties of Nce103p by stopped – flow kinetics revealed carbonic anhydrase activity. It is hypothesised, that Nce103p is essential for fixation of carbon dioxide and bicarbonate within the cell in order to sustain basic metabolic reactions. Furthermore, the induction of hyphal growth was independent of aquaporine-mediated transport of carbon dioxide. Bicarbonate rather carbon dioxide activates directly the adenylyl cyclase Cdc35p generating cyclic AMP as second messenger and influencing the transcription of hyphal specific genes in Candida albicans thus promoting the morphological transition from yeast growth to elongated hyphal growth. This signal transduction cascade is present in Candida albicans as well as Cryptococcus neoformans and it is believed to be a pan fungal signal transduction cascade. The specific inhibition of carbon dioxide mediated polymorphism may serve as a new target for antifungal therapeutic agents. KW - Candida KW - Candida albicans KW - Kohlendioxid KW - Kohlendioxidfixierung KW - Virulenz KW - Morphologie KW - Signaltransduktion KW - Cyclo-AMP KW - Soor KW - Carboanhydrase KW - Cryptococcus neoformans KW - Morphogenese KW - Hyphe KW - Hefeartige Pilze KW - Knockout KW - Aquaporin KW - Candida albicans KW - Morphology KW - carbon dioxide KW - carbonic anhydrase KW - aquaporine Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34573 ER - TY - THES A1 - Stoll, Regina T1 - Einfluss der Phosphoenolpyruvat-Phosphotransferasesysteme auf die Aktivität des Virulenzgenregulators PrfA von Listeria monocytogenes T1 - Impact of the phosphoenolpyruvate phosphotransferasesystems on the activity of the virulence gene regulator PrfA of Listeria monocytogenes N2 - Die PrfA-Aktivität im L. monocytogenes Stamm EGD sowie dessen prfA Deletionsmutante mit dem prfA- bzw. prfA*-Gen unter Kontrolle des prfA-Promotors auf dem High-Copy Plasmid pERL3 wurde nach Wachstum in BHI, LB (Luria-Bertani Medium) und definiertem MM untersucht. Die Medien waren versetzt mit 50 mM der PTS-Kohlenstoffquellen Glucose, Mannose oder Cellobiose oder mit der Nicht-PTS-Kohlenstoffquelle Glycerin. Mit dem Wildtyp EGD konnte in BHI und LB mit allen genannten Kohlenstoffquellen nur eine geringe PrfA-Aktivität beobachtet werden. In MM dagegen war die PrfA-Aktivität in Anwesenheit von Glycerin stark erhöht und mit Cellobiose als einziger Kohlenstoffquelle stark reprimiert. Mit dem PrfA*-überexprimierenden Stamm wurden unter allen Bedingungen hohe PrfA-Aktivität gefunden. EGDΔprfApPrfA zeigte dagegen trotz gleicher PrfA-Menge wie EGDΔprfApPrfA* nur in BHI eine hohe PrfA-Aktivität. Die Zugabe des Amberlites XAD4 in LB erhöht die reduzierte PrfA-Aktivität in EGDΔprfApPrfA und in MM verstärkt XAD4-Zugabe die PrfA-Aktivität des Wildtyps. Eine ptsH-Mutante ist in LB und MM unabhängig von der Zugabe einer der vier Kohlenstoffquellen nicht in der Lage zu wachsen (Stoll et al., 2008), was darauf hin deutet, dass die Aufnahme der verwendeten Kohlenstoffquelle und auch der Glycerinstoffwechsel von einem intakten PTS-Weg abhängig sind. In BHI stehen dagegen offensichtlich noch PTS-unabhängige Kohlenstoffquellen zur Verfügung, da die ptsH-Mutante in BHI noch wachsen kann. Dies unterstützt auch die Beobachtung, dass die Generationszeiten von L. monocytogenes in LB und vor allem MM im Vergleich zu BHI wesentlich länger sind. Expressionsdaten der PTS-Gene wurden von allen drei Stämmen unter verschiedenen Wachstumsbedingungen erstellt. Die Daten deuten darauf hin, dass die PrfA-Aktivität mit der Expressionsstärke und dem Phosphorylierungsstatus bestimmter PTS-Permeasen zusammenhängt. PTS-Permeasen bestehen immer aus mindestens drei Domänen, der Membran überspannenden Zucker transportierenden Domäne EIIC (und EIID im Falle von Mannose spezifischen PTS) und den zwei im Zytosol löslichen Komponenten EIIA und EIIB. EIIA wird direkt von HPr-His-P phosphoryliert, welches sein Phosphat von dem von PEP phosphorylierten EI empfängt. Das PTS spielt neben der Zuckeraufnahme eine Rolle in vielen regulatorischen Vorgängen in der Bakterienzelle, unter anderem in der Pathogenese (Barabote and Saier, 2005; Deutscher et al., 2006; Postma et al., 1993). Listerien codieren für alle sieben bekannten PTS-Familien, 86 Gene codieren für 29 komplette und einige unvollständige PTS. Trotz der großen Anzahl an PTS-Genen besitzt L. monocytogenes kein vollständiges PtsG, welches homolog zu E. coli oder B. subtilis ist, sondern nur ein EIIAGlc. Um die an der Glucoseaufnahme involvierten PTS-Permeasen zu identifizieren und einen möglichen Zusammenhang zwischen diesen PTS-Permeasen und der PrfA-Aktivität zu untersuchen, wurden in dieser Arbeit systematisch PTS-Permeasen deletiert, welche für putative Beta-Glucosid-PTS (PTSGlc), Mannose-PTS (PTSMan) und Cellobiose-PTS (PTSLac) codieren. Diese Deletionsmutanten wurden bezüglich ihres Wachstumes in Gegenwart der entsprechenden PTS-Zucker und die PrfA-Aktivität untersucht. Deletionen von in L. monocytogenes EGD-e nur schwach exprimierten PTSGlc haben keinen Einfluss auf das Wachstum in MM mit 10 mM Glucose oder Cellobiose. Von den vier exprimierten PTSMan sind zumindest zwei eindeutig in der Lage, Glucose zu transportieren, und die Deletion dieser PTS-Permeasen, codiert von lmo0096-0098 und lmo0781-0784, erhöht sehr deutlich die Expression des im Wildtyp wenig exprimierten Gens für die PTS-Permease PTSGlc(lmo0027). Für den Cellobiose-Transport scheint von den sechs vollständigen PTSLac-Permeasen vor allem PTSLac(lmo2683-2685) und nach Deletion dieses Operons, ebenfalls die PTSGlc(lmo0027)-Permease wichtig zu sein. Obwohl die multiple Deletion dieser für die Glucose/Mannose- bzw. Cellobiose-Aufnahme in L. monocytogenes wichtigen PTS-Permeasen das Wachstum in definiertem MM drastisch reduziert, haben diese Deletionen offensichtlich keine Auswirkung auf das intrazelluläre Wachstum, da die Infektionsrate so effizient ist wie die des Wildtyps. Auf PrfA hat die schrittweise Deletion der Glucose/Mannose-spezifischen PTS-Permeasen nach Wachstum in MM mit Glucose als einziger Kohlenstoffquelle eine aktivierende Wirkung, jedoch keine Auswirkung nach Wachstum in Cellobiose-haltigem MM. Umgekehrt verhält es sich mit den PTSLac-Deletionsmutanten. In vitro Transkriptionsstudien mit (teilweise phosphoryliert) aufgereinigten Lmo0096 (EIIABMan) und Lmo1017 (EIIAGlc) -Proteinen deuten auf eine direkte Interaktion zwischen PrfA und bestimmten EII-Proteinen hin. Dies konnte für Lmo0096 auch in Immunpräzipitationsassays gezeigt werden. Eine Überexpression von Lmo0096 führte zudem zu einer sehr deutlichen Reduktion der PrfA-Aktivität nach Wachstum in MM mit Glucose. N2 - In this study the PrfA activity was assessed in L. monocytogenes strain EGD and its isogenic deletion mutant (EGDΔprfA) with the prfA or prfA* gene under the control of the prfA promoter located on the high copy plasmid pERL3 (strains EGDΔprfApPrfA and EGDΔprfApPrfA*) after growth in BHI, LB (Luria-Bertani broth) and defined minimal medium. Media were supplemented with 50 mM of the PTS carbon sources glucose, mannose or cellobiose or with the non-PTS carbon source glycerol. In the wild type EGD grown in BHI and LB a low PrfA activity was observed with all of the above carbon sources. In MM PrfA activity was strongly increased in the presence of glycerol and strongly decreased with cellobiose as sole carbon source. In the PrfA* overexpressing strain EGDΔprfApPrfA* high PrfA activity was detected under all conditions. EGDΔprfApPrfA exhibited a high activity only in BHI, though PrfA amounts were equally high as in EGDΔprfApPrfA*. Addition of the amberlite XAD4 to LB increases the reduced PrfA activity in EGDΔprfApPrfA and the activity of the wildtype in MM. A ptsH mutant is unable to grow in LB and MM irrespective of the supplementation with the four carbon sources (Stoll et al., 2008), indicating that the uptake of the carbon source used as well as the glycerol metabolism are dependent on an intact PTS pathway. In contrast, BHI obviously possesses PTS independent carbon sources, as the ptsH mutant is still able to grow in BHI. This is also confirmed by the fact that L. monocytogenes generation times are significantly longer in LB and even more in MM as compared to BHI. Expression of the PTS genes was assessed in all three strains upon different growth conditions. The data suggest that PrfA activity is correlated with the expression level and the phosphorylation state of specific PTS permeases. PTS permeases always consist of at least three domains, the membrane crossing sugar transporting domain EIIC (and EIID in mannose specific PTS) and the two cytosolic components EIIA and EIIB. EIIA is directly phosphorylated by HPr-His-P which receives its phosphate group from EI which is phosphorylated by PEP. Aside from sugar transport PT Systems are involved in a variety of regulatory processes in the bacterial cell, e.g. in pathogenesis (Barabote and Saier, 2005; Deutscher et al., 2006; Postma et al., 1993). Listeria code for all of the seven known PTS families with 86 genes coding for 29 complete and several incomplete PTS. Despite the large number of PTS genes L. monocytogenes does not possess a complete PtsG homologue to E. coli or B. subtilis but only an orphan EIIAGlc. To identify the PTS permeases involved in glucose uptake and to investigate a possible role in PrfA regulation, mutants with deletions of beta glucoside PTS (PTSGlc), mannose PTS (PTSMan) and cellobiose PTS (PTSLac) permeases have been analyzed systematically in this study. These deletion mutants were analyzed in respect to their growth upon the respective PTS sugars and to their PrfA activity. Deletion of the five PTSGlc permeases only weakly expressed in L. monocytogenes EGD-e had no impact on growth in MM with 10 mM glucose or cellobiose. At least two out of the four expressed PTSMan permeases are able to transport glucose and the deletion of these PTS (encoded by lmo0096-0098 and lmo0781-0784) causes a significant increase in expression of the PTSGlc(lmo0027) permease, which is expressed at a low level in the wildtype. For transport of cellobiose, only PTSLac(lmo2683-2685) out of the six complete PTSLac permeases and, after deletion of this operon, PTSGlc(lmo0027) seem to be of importance. Although multiple deletions of the PTS important for glucose/mannose and cellobiose uptake have severe consequences on growth in defined MM, obviously intracellular life is not affected, as infection rates resemble those of the wild type. PrfA is activated by the stepwise deletion of the glucose/mannose specific PTS upon growth in MM supplemented with glucose, but no effect is seen upon growth in cellobiose supplemented MM. The behavior of the PTSLac deletion mutants is conversely. In vitro transcription studies with (partially phosphorylated) purified Lmo0096 (EIIABMan) and Lmo1017 (EIIAGlc) proteins suggest a direct interaction between PrfA and specific EII proteins. This could be confirmed for Lmo0096 in immuno precipitation assays. An overexpression of lmo0096 lead to a significant reduction of PrfA activity upon growth in MM supplemented with glucose. KW - Listeria monocytogenes KW - Phosphotransferasesystem KW - Virulenz KW - PrfA KW - PrfA Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32072 ER - TY - THES A1 - Berg, Thorsten T1 - Virulenzregulationskaskade und Chitobiose-Metabolismus in Vibrio cholerae T1 - Virulence gene regulation and chitobiose-metabolism in Vibrio cholerae N2 - Vibrio cholerae, der Erreger der gastrointestinalen Erkrankung Cholera, ist ein Gram- negatives, fakultativ anaerobes gekrümmtes Stäbchenbakterium und zugleich der wohl bekannteste Vertreter der Familie Vibrionaceae. Es persisitiert die meiste Zeit in aquatischen Ökosystemen wie Flüssen, Seen oder Meeresküsten, wo das Bakterium meist mit Crustaceen oder anderen Organismen mit Chitin-haltigen Oberflächen assoziiert vorliegt. Über orale Aufnahme kontaminierter Lebensmittel oder von Wasser kann das Bakterium in den menschlichen Organismus gelangen und dort den oberen Dünndarmbereich kolonisieren, wo letztlich durch verschiedene Virulenzfaktoren, aber hauptsächlich durch das Cholera-Toxin, die Symptomatik der Cholera ausgelöst wird. V. cholerae ist somit sowohl in seiner natürlichen Umgebung, als auch im humanen Wirt höchst unterschiedlichen Umweltbedingungen ausgesetzt. Diese alternierenden Umweltreize stellen verschiedene Anforderungen an die Expressions- und Regulationsfähigkeiten von Proteinbiosynthesen des Bakteriums dar. Die Notwendigkeit einer raschen Adaption setzt daher vielfältige und komplexe Genregulationsmechanismen voraus. Im ersten Teil der hier vorliegenden Arbeit sollte die Genregulation des chs-Operons untersucht werden. Als Grundlage dienten hierbei Hinweise, nach welchen dieses Operon als putatives PTS eine Rolle für den Metabolismus von dem Chitin-Derivat Chitobiose spielen könnte. Zudem sollte der Einfluss des aus Escherichia coli bekannten Repressors Mlc auf die Expression des Operons tiefer gehend untersucht werden. Im Rahmen dieser Arbeit war es gelungen, das als ChsR benannte Protein eindeutig als spezifischen LacI-ähnlichen Repressor für das chs-Operon zu bestätigen. Weiter konnte auch eine cAMP-abhängige Expressionsinduktion bestätigt werden, welche sich allerdings nur bei inaktiven ChsR durchsetzen kann. Als spezifischer Induktor für den Repressor ChsR konnte Chitobiose (GlcN)2 identifiziert werden, welches zwar bei dem in dieser Arbeit verwendeten O1-Stamm SP27459-S nicht als alleinige Kohlenstoffquelle dienen kann, aber unter induktiven Konzentrationen die Repressoreigenschaft von ChsR inhibiert. Zugleich konnte ChsC als für den Import des Induktors Chitobiose verantwortliches Protein identifiziert werden. Weiter nicht eindeutig zu klären blieb der Einfluss von Mlc auf das chs-Operon. Zwar konnte der aktivierende Effekt von Mlc auf die chs-Expression durch Komplementation bestätigt werden, der genaue Mechanismus bleibt jedoch weiterhin unbekannt und bedarf weiterer Untersuchungen. Einzig der Einfluss von Mlc auf den Chitobiose-Import konnte ausgeschlossen werden. Im zweiten Teil dieser Arbeit sollte der weitaus komplexere Mechanismus der Virulenzgenregulation untersucht werden. Im Fokus stand hierbei der Hauptvirulenz-genregulator ToxR und dessen Abhängigkeit von der periplasmatischen Protease DegS. Anhand unterschiedlicher Experimente auf Promotoraktivitäts-, mRNA- und Proteinebene konnte eine Abnahme der ToxR-Aktivität in der degS-Knockout Mutante beobachtet werden, was auf eine Aktivierung von ToxR durch DegS schließen lässt. Weiter konnte eine Abhängigkeit der Aktivität von ToxR von der ebenfalls DegS-abhängigen RpoE-Signalkaskade ausgeschlossen werden. Auch konnte gezeigt werden, dass die Integrität von ToxR durch ToxS, nicht aber durch DegS bestimmt wird. Der exakte Mechanismus der DegS-induzierten ToxR-Aktivierung konnte im Rahmen dieser Arbeit nicht mehr ermittelt werden. Es wurden jedoch Hinweise darauf gewonnen, dass eine direkte ToxR-DegS-Interaktion im periplasmatischen Raum stattfinden könnte. Die in dieser Arbeit gewonnen Erkenntnisse hinsichtlich der ToxR-Regulation durch DegS bieten sowohl eine interessante neue Perspektive der Funktionsweise der periplasmatischen Protease DegS, als auch eine breite Grundlage für weitergehende Untersuchungen bezüglich der Aktivierung des wichtigsten Virulenzregulators ToxR in V. cholerae. N2 - Vibrio cholerae, the causative agents of the gastrointestinal disease cholera, is a Gram-negative facultative anaerobic curved bacterium. It further is probably the best characterized member of the family Vibrionaceae. V. cholerae mainly persists in aquatic ecosystems such as rivers, lakes or sea-coasts where it is found associated with crustaceae and other organisms exposing chitin-containing surfaces. The bacterium infects the human organism via the oral uptake pathway by ingestion of contaminated food or water. Subsequently, it colonizes the upper part of the small intestine and there it eventually causes the typical symptoms of cholera. Thus, both in its natural surrounding and within the human host, V. cholerae faces dramatically alternating environmental conditions. These challenges exhibit different demands and flexibility to alteration of protein expression. This necessity for efficient adaption requires manifold and complex mechanisms of gene regulation. In the first part of the study presented here, the gene regulation of the chs-operon has been examined. In the forefront of this examination there were indications that this operon may play a role as a putative PTS for the metabolism of the chitin-derivate chitobiose. Furthermore, the influence of the in Escherichia coli well-known repressor Mlc on the expression of the operon has been determined. Within this study the protein termed ChsR could be confirmed as a specific LacI-similar repressor type protein for the chs-operon. Also, a cAMP-dependend induction of expression could be verified, which however, can only be achieved when ChsR is inactive. Chitobiose (GlcN)2 has been identified as the specific inductor for the repressor ChsR. This inductor substrate cannot be used as the only carbon-source for the O1-strain SP27459-S, but is able to act on the repressor ChsR under inductive concentrations to cause depression on the chs-operon. Furthermore, ChsC could be identified to be responsible for the import of the inductor chitobiose. The influence of Mlc on the chs-operon could not be elucidated. Even though the activating effect of Mlc on the chs-expression has been confirmed via complementation analysis, however the exact mechanism remains unknown and needs further investigations. Finally, an influence of Mlc on the import of chitobiose could be ruled out. In the second part of this study a far more complex mechanism of virulence gene expression has been investigated. The examinations concentrated on the main virulence regulator ToxR, which is involved in gene regulation of cholera-toxin genes and others, and its dependence on the periplasmatic protease DegS. On the basis of various experiments a decrease of ToxR-activity in a degS-knockout mutant could be observed on promoter-activity-, mRNA- and protein level, utilizing the ToxR dependent regulated porin OmpU. The obtained results clearly indicated that an activation of ToxR via interaction with DegS seems possible. Furthermore, a dependence of ToxR-activity on the DegS-dependent RpoE-signal cascade could be ruled out. Also it could be demonstrated that the integrity of ToxR is maintained by ToxS, but not by DegS. However, the exact mechanism of the DegS-induced activation of ToxR could not be determined within this study and should be investigated in future. So far only genetic derived indications have been gained that there is direct interaction between ToxR and DegS in the periplasmic space, a proof by protein/protein interaction is still lacking. The findings summarized in this study addressing the regulation of ToxR via DegS present an interesting new perspective of the function of the periplasmic protease DegS involved in affecting a general virulence regulatory pathway. Moreover, the data will serve as the basis for further investigations on the molecular mechanism of activation and signal transduction of the most important virulence factor ToxR in V. cholerae. KW - Cholerae KW - Chitobiose KW - ToxR DegS KW - Virulenz KW - Cholerae KW - Chitobiose KW - ToxR DegS KW - Virulence Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28293 ER -