TY - JOUR A1 - Mottola, Austin A1 - Ramírez-Zavala, Bernardo A1 - Hünninger, Kerstin A1 - Kurzai, Oliver A1 - Morschhäuser, Joachim T1 - The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans JF - Molecular Microbiology N2 - The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall. KW - cell wall KW - zinc cluster transcription factor KW - Candida albicans KW - protein kinases Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259583 VL - 116 IS - 2 ER - TY - THES A1 - Wagner, Rabea Marie T1 - The Bacterial Exo- and Endo-Cytoskeleton Spatially Confines Functional Membrane Microdomain Dynamics in \(Bacillus\) \(subtilis\) T1 - Das bakterielle Außen- und Innenskelett begrenzt die Mobilität funktionaler Membranmikrodomänen in \(Bacillus\) \(subtilis\) räumlich N2 - Cellular membranes form a boundary to shield the inside of a cell from the outside. This is of special importance for bacteria, unicellular organisms whose membranes are in direct contact with the environment. The membrane needs to allow the reception of information about beneficial and harmful environmental conditions for the cell to evoke an appropriate response. Information gathering is mediated by proteins that need to be correctly organized in the membrane to be able to transmit information. Several principles of membrane organization are known that show a heterogeneous distribution of membrane lipids and proteins. One of them is functional membrane microdomains (FMM) which are platforms with a distinct lipid and protein composition. FMM move within the membrane and their integrity is important for several cellular processes like signal transduction, membrane trafficking and cellular differentiation. FMM harbor the marker proteins flotillins which are scaffolding proteins that act as chaperones in tethering protein cargo to FMM. This enhances the efficiency of cargo protein oligomerization or complex formation which in turn is important for their functionality. The bacterium Bacillus subtilis contains two flotillin proteins, FloA and FloT. They form different FMM assemblies which are structurally similar, but differ in the protein cargo and thus in the specific function. In this work, the mobility of FloA and FloT assemblies in the membrane was dissected using live-cell fluorescence microscopy techniques coupled to genetic, biochemical and molecular biological methods. A characteristic mobility pattern was observed which revealed that the mobility of both flotillins was spatially restricted. Restrictions were bigger for FloT resulting in a decreased diffusion coefficient compared to FloA. Flotillin mobility depends on the interplay of several factors. Firstly, the intrinsic properties of flotillins determine the binding of different protein interaction partners. These proteins directly affect the mobility of flotillins. Additionally, binding of interaction partners determines the assembly size of FloA and FloT. This indirectly affects the mobility, as the endo-cytoskeleton spatially restricts flotillin mobility in a size-dependent manner. Furthermore, the extracellular cell wall plays a dual role in flotillin mobility: its synthesis stimulates flotillin mobility, while at the same time its presence restricts flotillin mobility. As the intracellular flotillins do not have spatial access to the exo-cytoskeleton, this connection is likely mediated indirectly by their cell wall-associated protein interaction partners. Together the exo- and the endo-cytoskeleton restrict the mobility of FloA and FloT. Similar structural restrictions of flotillin mobility have been reported for plant cells as well, where the actin cytoskeleton and the cell wall restrict flotillin mobility. These similarities between eukaryotic and prokaryotic cells indicate that the restriction of flotillin mobility might be a conserved mechanism. N2 - Zelluläre Membranen bilden eine Barriere um das Zellinnere von dem -äußeren abzuschirmen. Das ist insbesondere bei Bakterien wichtig, einzellige Organismen, deren Membranen in direktem Kontakt zu ihrer Umgebung stehen. Die Membran muss es ermöglichen, Informationen über mögliche vorteilhafte oder schädliche Einflüsse in der Umgebung wahrzunehmen, damit die Zelle dementsprechend eine Reaktion initiieren kann. Die Informationsaufnahme und die resultierenden Reaktionen werden von Membranproteinen in Gang gesetzt, deren Organisation in der Membran Voraussetzung für ihre Funktionalität ist. Mehrere Prinzipien zur Membranorganisation sind bekannt, die alle eine heterogene Verteilung von Proteinen und Lipiden zu Grunde legen. Ein Beispiel für ein solches Prinzip sind funktionelle Membranmikrodomänen (FMM), Plattformen mit einer besonderen Lipid- und Proteinzusammensetzung. FMM bewegen sich in der Membran und ihre Integrität ist für viele zelluläre Prozesse wichtig, zum Beispiel für Signaltransduktion, Membrantransport oder zur zellulären Differenzierung. Flotilline sind Markerproteine für FMM. Sie bilden eine Art Gerüst und funktionieren als Chaperone, indem sie die sogenannten Frachtproteine in den FMM binden. Dort wird die Effizienz der Oligomerisierung oder Komplexbildung der Frachtproteine gesteigert, was für ihre Funktionalität und die ihrer assoziierten Prozesse von Bedeutung ist. In dem Bakterium Bacillus subtilis gibt es zwei Flotilline, FloA und FloT. Diese formen FMM Plattformen, die zwar strukturell ähnlich sind, sich aber in ihren Frachtproteinen und somit auch in ihren spezifischen Funktionen unterscheiden. In dieser Arbeit wurde die Mobilität der FloA- und FloT-abhängigen Plattformen in der Membran untersucht. Dafür wurden Technologien der Fluoreszenzmikroskopie mit genetischen, biochemischen und molekularbiologischen Ansätzen kombiniert. Charakteristische Bewegungsmuster wurden beobachtet, die zeigten, dass die Beweglichkeit beider Flotilline räumlich begrenzt war. Dabei war die Einschränkung für FloT größer, und dementsprechend der Diffusionskoeffizient kleiner verglichen mit FloA. Die Mobilität von FloA und FloT hängt von dem Zusammenspiel mehrerer Faktoren ab. Zum einen bestimmen intrinsische Eigenschaften der Flotillinproteine ihre Fähigkeit verschiedene Interaktionspartner zu binden. Diese wirken sich dann direkt auf die Mobilität von Flotillinen aus. Des Weiteren bestimmt die Bindung verschiedener Interaktionspartner auch die Größe der FloA- und FloT- abhängigen Plattformen. Die resultierenden Größen beeinflussen die Mobilität indirekt, da das zelluläre Innenskelett die Flotillinmobilität räumlich in größenabhängiger Weise begrenzt. Außerdem spielt das Außenskelett der Zelle, die Zellwand, eine zweifache Rolle: die Zellwandsynthese fördert die Mobilität der Flotilline, während die Zellwand an sich gleichzeitig die Mobilität der Flotilline einschränkt. Da Flotilline räumlich keine Verbindung zum Außenskelett haben, wird diese Verbindung wahrscheinlich durch ihre Zellwand-assoziierten Interaktionspartner übermittelt. Zusammenfassend beschränken das Außen- und das Innenskelett die Mobilität von FloA und FloT. In Pflanzen wurden ähnliche strukturelle Beschränkungen der Mobilität von Flotillinen durch das Aktin- Zytoskelett und die Zellwand beschrieben. Diese Ähnlichkeit zwischen prokaryotischen und eukaryotischen Zellen deutet darauf hin, dass die Beschränkung der Mobilität der Flotillin-Plattformen ein konservierter Mechanismus sein könnte. KW - Heubacillus KW - Bakterienzellwand KW - Plasmamembran KW - Zellskelett KW - Bacillus subtilis KW - functional membrane microdomains KW - membrane dynamics KW - bacterial lipid rafts KW - cytoskeleton KW - cell wall Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217458 ER - TY - THES A1 - Mottola, Austin T1 - Molecular characterization of the SNF1 signaling pathway in \(Candida\) \(albicans\) T1 - Molekulare Charakterisierung des SNF1-Signalweges von \(Candida\) \(albicans\) N2 - The fungus Candida albicans is a typical member of the human microbiota, where it usually behaves as a commensal. It can also become pathogenic; often causing minor superficial infections in healthy people, but also potentially fatal invasive systemic infections in immunocompromised people. Unfortunately, there is only a fairly limited set of antifungal drugs, and evolution of drug resistance threatens their efficacy. Greater understanding of the mechanisms that C. albicans uses to survive in and infect the host can uncover candidate targets for novel antifungals. Protein kinases are central to a vast array of signalling pathways which govern practically all aspects of life, and furthermore are relatively straightforward to design drugs against. As such, investigation and characterization of protein kinases in C. albicans as well as their target proteins and the pathways they govern are important targets for research. AMP-activated kinases are well conserved proteins which respond to energy stress; they are represented in yeasts by the heterotrimeric SNF1 complex, which responds primarily to the absence of glucose. In this work, the SNF1 pathway was investigated with two primary goals: identify novel targets of this protein kinase and elucidate why SNF1 is essential. Two approaches were used to identify novel targets of SNF1. In one, suppressor mutants were evolved from a strain in which SNF1 activity is reduced, which exhibits defects in carbon source utilization and cell wall integrity. This revealed a suppressor mutation within SNF1 itself, coding for the catalytic subunit of the complex – SNF1Δ311-316. The second approach screened a library of artificially activated zinc cluster transcription factors, identifying Czf1 as one such transcription factor which, upon artificial activation, restored resistance to cell wall stress in a mutant of the SNF1 pathway. Finally, a, inducible gene deletion system revealed that SNF1 is not an essential gene. N2 - Der Pilz Candida albicans ist ein typisches Mitglied der menschlichen Mikrobiota, wo er sich normalerweise als Kommensale verhält. Als fakultativ pathogener Erreger kann er jedoch auch leichte, überfachliche Infektionen bei gesunden Menschen verursachen, sowie potenziell tödliche, invasive systemische Infektionen bei immungeschwächten Menschen. Leider gibt es nur eine recht begrenzte Anzahl von Antimykotika, und die Entwicklung von Resistenzen bedroht deren Wirksamkeit. Ein besseres Verständnis der Mechanismen, die C. albicans nutzt, um im Wirt zu überleben und ihn zu infizieren, kann mögliche Angriffspunkte für neue Antimykotika aufdecken. Proteinkinasen sind von zentraler Bedeutung für eine Vielzahl von Signalwegen, die praktisch alle Aspekte des Lebens steuern und gegen die sich zudem relativ einfach Medikamente entwickeln lassen. Daher ist die Untersuchung und Charakterisierung von Proteinkinasen in C. albicans sowie ihrer Zielproteine und der von ihnen gesteuerten Signalwege ein wichtiges Ziel für die Forschung. AMP-aktivierte Kinasen sind hoch konservierte Proteine, die auf Energiestress reagieren; sie sind in Hefen durch den heterotrimeren SNF1-Komplex vertreten, der vor allem auf das Fehlen von Glukose reagiert. In dieser Arbeit wurde der SNF1-Signalweg mit zwei primären Zielen untersucht: die Identifizierung neuer Zielproteine dieser Proteinkinase und die Klärung der Frage, warum SNF1 essentiell ist. Für die Identifikation neuer Zielproteine von SNF1 wurden zwei Ansätze verwendet. Zum einen wurde ein Stamm mit reduzierter SNF1-Aktivität, für die Entwicklung von Suppressor-Mutanten verwendet, die einen Defekte bei der Verwertung von Kohlenstoffquellen und eine eingeschränkte Zellwandintegrität aufweisen. Dabei wurde eine Suppressormutation in SNF1 selbst entdeckt, die für die katalytische Untereinheit des Komplexes – SNF1Δ311-316 - kodiert. Für den zweite Ansatz wurde eine Bibliothek von künstlich aktivierten Zink-Cluster-Transkriptionsfaktoren untersucht. Dies führte zur Identifikation von Czf1 als einen solchen Transkriptionsfaktor, der nach künstlicher Aktivierung die Resistenz gegen Zellwandstress in einer Mutante des SNF1- Signalweges wiederherstellte. Schließlich zeigte ein induzierbares Gendeletionssystem, dass SNF1 kein essentielles Gen ist. KW - candida albicans KW - yeast KW - fungus KW - candida KW - kinase KW - cell wall Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238098 ER - TY - JOUR A1 - Remmele, Christian W. A1 - Luther, Christian H. A1 - Balkenhol, Johannes A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Dittrich, Marcus T. T1 - Integrated inference and evaluation of host-fungi interaction networks JF - Frontiers in Microbiology N2 - Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data. KW - candida genome database KW - computational prediction KW - potential role KW - network inference KW - bioinformatics and computational biology KW - protein interaction database KW - Aspergillus fumigatus KW - cell wall KW - functional modules KW - alzheimers disease KW - molecular cloning KW - Candida albicans KW - pathogen-host interaction (PHI) KW - protein-protein interaction KW - pathogenicity KW - interolog Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148278 VL - 6 IS - 764 ER - TY - JOUR A1 - Benz, Roland A1 - Jones, Michael D. A1 - Younas, Farhan A1 - Maier, Elke A1 - Modi, Niraj A1 - Mentele, Reinhard A1 - Lottspeich, Friedrich A1 - Kleinekathöfer, Ulrich A1 - Smit, John T1 - OmpW of Caulobacter crescentus functions as an outer membrane channel for cations JF - PLoS ONE N2 - Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus does not contain genes predicted to code for outer membrane porins of the OmpF/C general diffusion type present in enteric bacteria or those coding for specific porins selective for classes of substrates. Instead, genes coding for 67 TonB-dependent outer membrane receptors have been identified, suggesting that active transport of specific nutrients may be the norm. Here, we report that high channel-forming activity was observed with crude outer membrane extracts of C. crescentus in lipid bilayer experiments, indicating that the outer membrane of C. crescentus contained an ion-permeable channel with a single-channel conductance of about 120 pS in 1M KCl. The channel-forming protein with an apparent molecular mass of about 20 kDa was purified to homogeneity. Partial protein sequencing of the protein indicated it was a member of the OmpW family of outer membrane proteins from Gram-negative bacteria. This channel was not observed in reconstitution experiments with crude outer membrane extracts of an OmpW deficient C. crescentus mutant. Biophysical analysis of the C. crescentus OmpW suggested that it has features that are special for general diffusion porins of Gram-negative outer membranes because it was not a wide aqueous channel. Furthermore, OmpW of C. crescentus seems to be different to known OmpW porins and has a preference for ions, in particular cations. A putative model for OmpW of C. crescentus was built on the basis of the known 3D-structures of OmpW of Escherichia coli and OprG of Pseudomonas aeruginosa using homology modeling. A comparison of the two known structures with the model of OmpW of C. crescentus suggested that it has a more hydrophilic interior and possibly a larger diameter. KW - matrix protein porin KW - amino acid sequence KW - escherichia coli KW - selective channel KW - molecular basis KW - lipid bilayer membranes KW - S-layer protein KW - pseudomonas aeruginosa KW - ionic selectivity KW - cell wall Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145114 VL - 10 IS - 11 ER - TY - JOUR A1 - Irmer, Henriette A1 - Tarazona, Sonia A1 - Sasse, Christoph A1 - Olbermann, Patrick A1 - Loeffler, Jürgen A1 - Krappmann, Sven A1 - Conesa, Ana A1 - Braus, Gerhard H. T1 - RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior JF - BMC Genomics N2 - Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. KW - Saccharomyces cerevisiae KW - cerebral aspergillosis KW - gene expression KW - Aspergillus fumigatus KW - iron homeostasis KW - invasive pulmonary aspergillosis KW - Candida albicans KW - cell wall KW - lysine biosynthesis KW - human pathogen KW - murine model KW - virulence KW - mRNA-Seq KW - transcriptome KW - human pathogenic fungi KW - secondary metabolite gene cluster KW - detoxification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151390 VL - 16 IS - 640 ER - TY - JOUR A1 - Aistleitner, Karin A1 - Heinz, Christian A1 - Hoermann, Alexandra A1 - Heinz, Eva A1 - Montanaro, Jacqueline A1 - Schulz, Frederik A1 - Maier, Elke A1 - Pichler, Peter A1 - Benz, Roland A1 - Horn, Matthias T1 - Identification and Characterization of a Novel Porin Family Highlights a Major Difference in the Outer Membrane of Chlamydial Symbionts and Pathogens JF - PLoS ONE N2 - The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydia outer membrane proteins, PomS (pc1489) and PomT (pc1077), are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts. KW - cell wall KW - protochlamydia amoebophila KW - escherichia coli KW - matrix protein porin KW - gram negative bacteria KW - single channel analysis KW - developmental cycle KW - mycobacterium smegmatis KW - monoclonal antibodies KW - signal peptides Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131176 VL - 8 IS - 1 ER - TY - THES A1 - Luckner, Sylvia T1 - Towards the development of high affinity InhA and KasA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis T1 - Entwicklung von hoch-affinen InhA und KasA Inhibitoren gegen resistente Stämme von Mycobacterium tuberculosis N2 - Mycobacterium tuberculosis is the causative agent of tuberculosis and responsible for more than eight million new infections and about two million deaths each year. Novel chemotherapeutics are urgently needed to treat the emerging threat of multi drug resistant and extensively drug resistant strains. Cell wall biosynthesis is a widely used target for chemotherapeutic intervention in bacterial infections. In mycobacteria, the cell wall is comprised of mycolic acids, very long chain fatty acids that provide protection and allow the bacteria to persist in the human macrophage. The type II fatty acid biosynthesis pathway in Mycobacterium tuberculosis synthesizes fatty acids with a length of up to 56 carbon atoms that are the precursors of the critical mycobacterial cell wall components mycolic acids. KasA, the mycobacterial ß-ketoacyl synthase and InhA, the mycobacterial enoyl reductase, are essential enzymes in the fatty acid biosynthesis pathway and validated drug targets. In this work, KasA was expressed in Mycobacterium smegmatis, purified and co-crystallized in complex with the natural thiolactone antibiotic thiolactomycin (TLM). High-resolution crystal structures of KasA and the C171Q KasA variant, which mimics the acyl enzyme intermediate of the enzyme, were solved in absence and presence of bound TLM. The crystal structures reveal how the inhibitor is coordinated by the enzyme and thus specifically pinpoint towards possible modifications to increase the affinity of the compound and develop potent new drugs against tuberculosis. Comparisons between the TLM bound crystal structures explain the preferential binding of TLM to the acylated form of KasA. Furthermore, long polyethylene glycol molecules are bound to KasA that mimic a fatty acid substrate of approximately 40 carbon atoms length. These structures thus provide the first insights into the molecular mechanism of substrate recognition and reveal how a wax-like substance can be accommodated in a cytosolic environment. InhA was purified and co-crystallized in complex with the slow, tight binding inhibitor 2-(o-tolyloxy)-5-hexylphenol (PT70). Two crystal structures of the ternary InhA-NAD+-PT70 were solved and reveal how the inhibitor is bound to the substrate binding pocket. Both structures display an ordered substrate binding loop and corroborate the hypothesis that slow onset inhibition is coupled to loop ordering. Upon loop ordering, the active site entrance is more restricted and the inhibitor is kept inside more tightly. These studies provide additional information on the mechanistic imperatives for slow onset inhibition of enoyl ACP reductases. N2 - Mycobacterium tuberculosis, der Erreger der Tuberkulose ist für mehr als acht Millionen Neu-Infektionen und ungefähr zwei Millionen Todesfälle jedes Jahr verantwortlich. Besonders die Entwicklung von multiresistenten und extrem resistenten Stämmen macht die Entwicklung neuer Medikamente gegen Tuberkulose dringend erforderlich. Die Zellwandbiosynthese ist ein validiertes Ziel für die Chemotherapie bei bakteriellen Infektionen. Bei Mycobakterien besteht die Zellwand zum Großteil aus Mykolsäuren, sehr langkettigen Fettsäuren, die den Bakterien Schutz bieten und ihnen ermöglichen, in Makrophagen zu überleben. Mycobakterien synthetisieren in der Fettsäurebiosynthese II (FAS-II) Fettsäuren bis zu einer Länge von 56 Kohlenstoffatomen, die Bestandteile der Mykolsäuren sind. KasA, die mycobakterielle ß-ketoacyl Synthase und InhA, die mycobakterielle enoyl Reductase, sind essentielle Enzyme der FAS-II und geeignete Ziele für die Entwicklung neuer Antibiotika. In dieser Arbeit wurde KasA in Mycobacterium smegmatis exprimiert und aufgereinigt. Das Protein wurde im Komplex mit dem natürlich vorkommenden Thiolacton-Antibiotikum Thiolactomycin (TLM) co-kristallisiert. Kristallstrukturen von KasA und der C171Q KasA Variante, die das acylierte Enzym-Intermediat darstellt, wurden als apo-Strukturen und im Komplex mit gebundenem TLM aufgeklärt. Die Kristallstrukturen zeigen, wie der Inhibitor an das Enzym gebunden ist und deuten darauf hin, wie das TLM Molekül verändert werden könnte, um seine Affinität für das Protein zu erhöhen und damit ein wirksames Medikament gegen Tuberkulose zu entwickeln. Vergleiche zwischen den TLM gebundenen Kristallstrukturen erklären, warum TLM bevorzugt an die acylierte Form des Enzyms bindet. Des Weiteren sind lange Polyethylenglykol-Moleküle an KasA gebunden, die ein Fettsäuresubstrat einer Länge von etwa 40 Kohlenstoff-Atomen nachahmen. Die Strukturen geben damit zum ersten Mal einen Einblick in den molekularen Mechanismus der Substrat-Erkennung und zeigen, wie eine wachsartige Substanz in einem cytosolischen Umfeld aufgenommen werden kann. InhA wurde aufgereinigt und im Komplex mit dem „slow binding“ Inhibitor 2-(o-tolyloxy)-5-hexylphenol (PT70) co-kristallisiert. Zwei Kristallstrukturen des ternären InhA-NAD+-PT70 Komplexes wurden gelöst und zeigen wie der Inhibitor in der Substratbindetasche gebunden ist. Beide Strukturen, weisen geordnete Substrat-Binde-Loops auf, die den Eingang zur „Active Site“ schließen und damit den gebundenen Inhibitor in der Tasche festhalten. Die Strukturen bestätigen damit die Hypothese, dass „Slow Binding Inhibition“ mit der Ordnung des Loops zusammenhängt. Diese Studien können als Basis für die Entwicklung weiterer „Slow Binding“ Inhibitoren verwendet werden. KW - Tuberkelbakterium KW - Multidrug-Resistenz KW - Arzneimitteldesign KW - Fettsäure-Synthase KW - Zellwand KW - Kristallstruktur KW - tuberculosis KW - multi-drug-resistance KW - drug development KW - fatty acid synthesis KW - cell wall KW - crystal structure KW - structure based drug design Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-43621 ER - TY - THES A1 - Kurzai, Oliver T1 - Molekulare Charakterisierung pH-regulierter Gene bei der humanpathogenen Hefespezies Candida dubliniensis und ihr Nutzen für die epidemiologische Diagnostik T1 - PH-regulated genes of the pathogenic yeast Candida dubliniensis and their impact in epidemiological diagnostics N2 - Candida dubliniensis ist eine 1995 erstmals beschriebene pathogene Hefespezies mit enger phylogenetischer Verwandtschaft zu Candida albicans. Sie wird mittels routinemäßig angewendeter Verfahren nicht von C. albicans unterschieden, weil sie als einzige Spezies im Genus Candida neben C. albicans Chlamydosporen ausbilden kann. C. dubliniensis ist bisher vor allem aus dem Oropharynx HIV-positiver Patienten isoliert worden. PHR1 und PHR2 sind funktionell homologe, pH-abhängig exprimierte Gene von C. albicans, deren Produkte essentiell für die Verknüpfung von b-1,3- und b-1,6-Glukan in der Zellwand sind. Die Deletion jedes dieser Gene führt zu einem pH-abhängigen Phänotyp mit aberranter Morphogenese in vitro und reduzierter Virulenz im Tiermodell. In dieser Arbeit werden PHR homologe Gene im Genom von C. dubliniensis charakterisiert. CdPHR1 weist eine Homologie von 90,5 Prozent zu PHR1 und CdPHR2 eine Homologie von 91,7 Prozent zu PHR2 auf. Wie PHR1 wird auch CdPHR1 nur unter neutralen und alkalischen Bedingungen exprimiert, während sich CdPHR2 Transkript, wie das von PHR2, nur unter sauren Bedingungen nachweisen lässt. Die funktionelle Homologie von CdPHR1 zu PHR1 wird durch Komplementation des Phänotyps einer C. albicans phr1 Mutante mit CdPHR1 gezeigt. Dabei erweist sich der native Promoter von CdPHR1 als funktional in C. albicans. Im Modellorganismus Saccharomyces cerevisiae wird CdPHR1 unter Kontrolle seines nativen Promotors dagegen pH-unabhängig exprimiert. Auch die zusätzliche Einführung eines mutierten, dominant aktiven Allels von RIM101, das in C. albicans für die pH-abhängige Genexpression verantwortlich ist, hat darauf keinen Einfluss. In C. glabrata und Aspergillus nidulans findet sich keine Expression von CdPHR1. Basierend auf Sequenzunterschieden zwischen PHR1 und CdPHR1 wird ein PCR-Schnelltest zur Speziesunterscheidung entwickelt. Dieser wird in einer epidemiologischen Studie mit 133 chlamydosporenpositiven klinischen Isolaten evaluiert. 21 oropharyngeale Isolate von 14 HIV-positiven Patienten können so retrospektiv als C. dubliniensis klassifiziert werden, dies entspricht einer Prävalenz von C. dubliniensis in diesem Kollektiv von 30 Prozent. Die Ergebnisse der PCR werden durch Sequenzierung ribosomaler Gene (V3, ITS1, ITS2) bestätigt. Parallel werden phänotypische Tests zur Identifizierung von C. dubliniensis auf ihre diagnostische Validität getestet. Während sich die Chlamydosporenmorphologie der Isolate und die Koloniefärbung auf dem Farbindikatormedium CHROMagar Candida als unzulänglich für die Unterscheidung erweisen und das für C. dubliniensis beschriebene Wachstumsdefizit bei 45°C zwar sensitiv, nicht aber spezifisch für die Identifizierung dieser Spezies ist, korreliert die Koloniemorphologie auf Staib-Agar zu 100 Prozent mit den molekularen Daten. Alle C. dubliniensis Isolate werden in einem biochemischen Assay (Micronaut RC) untersucht, dabei zeigt der Test auf b-Glukosidase Aktivität hohes diskriminatorisches Potenzial. In Resistenztestungen zeigen sich die C. dubliniensis Isolate sensibler als die oropharyngealen C. albicans Isolate gegen gebräuchliche Antimykotika. In dieser Studie kann gezeigt werden, dass C. dubliniensis und C. albicans auf teilweise austauschbare Mechanismen zur Reaktion auf Alterationen des pH-Milieus verfügen. Die pH-abhängige Regulation zellwandassoziierter Gene ist dabei eng mit morphogenetischen Prozessen verbunden. Trotz dieser Ähnlichkeit ist C. dubliniensis nicht nur weniger virulent als C. albicans, sondern zeigt auch ein unterschiedliches epidemiologisches Spektrum, das durch eine Spezialisierung auf oropharyngeale Kolonisation und Infektion bei HIV-positiven Patienten gekennzeichnet ist. Um die Gründe für diese Unterschiede aufzeigen zu können, ist eine verlässliche Identifizierung von C. dubliniensis notwendig. Dazu stellen die präsentierten Daten einerseits einen schnellen und verlässlichen PCR Test, andererseits eine sorgfältige Evaluierung derzeit gebräuchlicher phänotypischer Verfahren vor. Phänotypisch und genotypisch exzellent charakterisierte Isolate beider Spezies stehen für weitere Untersuchungen zur Verfügung. N2 - Candida dubliniensis is a recently described pathogenic yeast species that is phylogenetically closely related to Candida albicans. In routine clinical diagnostic procedures both species are not differentiated due to the unique ability of C. dubliniensis to form germ-tubes and chlamydospores as C. albicans. Most C. dubliniensis isolates have been recovered from the oropharynx of HIV-infected patients. PHR1 and PHR2 are functionally homologous genes of C. albicans responsible for crosslinking b-1,3- and b-1,6-glucans of the yeast cell wall. These genes are characterized by a unique pattern of pH-dependent transcription. Deletion of each of these genes results in a pH-dependent phenotype with aberrant in vitro morphogenesis and reduced virulence in an animal model. Here, PHR homologous genes of C. dubliniensis are characterized. CdPHR1 is 90.5 per cent homologous to PHR1, CdPHR2 is 91.7 per cent homologous to PHR2. Like PHR1, CdPHR1 is only expressed in neutral to alkaline conditions, whereas CdPHR2 transcript - as with PHR2 - can only be found in acidic conditions. Functional homology of CdPHR1 with PHR1 is shown by complementation of a phr1 phenotype in C. albicans with CdPHR1. The native promoter of CdPHR1 is thereby shown to be functional in C. albicans. In contrast CdPHR1 is expressed in a pH-independent manner in bakers yeast Saccharomyces cerevisiae. This constitutive expression is not altered by additional integration of a dominant active allele of RIM101, encoding the transcription factor, that ensures pH-dependent gene expression in C. albicans. CdPHR1 is not expressed in C. glabrata and Aspergillus nidulans. A rapid PCR-test for discrimination between C. albicans and C. dubliniensis is constructed based on sequence differences between PHR1 and CdPHR1. This test is evaluated in an epidemiological study with 133 chlamydospore-positive clinical yeast isolates. 21 oropharyngeal isolates are retrospectively identified as C. dubliniensis, resulting in a prevalence of 30 per cent in this patient collective. PCR-results are confirmed by sequencing rDNA (V3, ITS1, ITS2). Phenotypic tests for identification of C. dubliniensis are evaluated with respect to their diagnostic potential. Whereas chlamydospore-morphology and colony colour on Chromagar Candida are not suited for reliable discrimination, and the growth deficit of C. dubliniensis at 45°C is sensitive but not specific, colony morphology on Staib agar corresponds 100 per cent to the molecular biology data. All C. dubliniensis isolates are biochemically characterized using the Micronaut RC system. The test for b-glucosidase activity within this system shows a high discriminatory potential. Susceptibility testing reveals, that the C. dubliniensis isolates are more sensitive to antifungals than the C. albicans isolates. C. dubliniensis and C. albicans rely on interchangeable mechanisms to react to the ambient pH. Furthermore, pH-regulated expression of cell wall associated genes is closely linked to morphogenesis. Despite this, C. dubliniensis is not only less virulent than C. albicans but also displays a distinct epidemiology characterized by a preference for oropharyngeal colonialization and infection of HIV-positive patients. To reveal the reasons for this, reliable identification of C. dubliniensis is necessary. For that purpose, a rapid PCR test is introduced together with an evaluation of currently available phenotypic methods. Thoroughly characterized isolates of both species are available for further studies. KW - Candida KW - albicans KW - dubliniensis KW - pH KW - PHR KW - CdPHR KW - RIM101 KW - Zellwand KW - Candida KW - albicans KW - dubliniensis KW - pH KW - PHR KW - CdPHR KW - RIM10 KW - cell wall Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182281 ER -