TY - JOUR A1 - Kaluza, Benjamin F. A1 - Wallace, Helen M. A1 - Heard, Tim A. A1 - Minden, Vanessa A1 - Klein, Alexandra A1 - Leonhardt, Sara D. T1 - Social bees are fitter in more biodiverse environments JF - Scientific Reports N2 - Bee population declines are often linked to human impacts, especially habitat and biodiversity loss, but empirical evidence is lacking. To clarify the link between biodiversity loss and bee decline, we examined how floral diversity affects (reproductive) fitness and population growth of a social stingless bee. For the first time, we related available resource diversity and abundance to resource (quality and quantity) intake and colony reproduction, over more than two years. Our results reveal plant diversity as key driver of bee fitness. Social bee colonies were fitter and their populations grew faster in more florally diverse environments due to a continuous supply of food resources. Colonies responded to high plant diversity with increased resource intake and colony food stores. Our findings thus point to biodiversity loss as main reason for the observed bee decline. KW - biodiversity KW - ecosystem services KW - social bees KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177231 VL - 8 IS - 12353 ER - TY - THES A1 - Schenk [née Wolf], Mariela T1 - Timing of wild bee emergence: mechanisms and fitness consequences T1 - Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen N2 - Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. N2 - Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können. KW - wild bees KW - timing KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161565 ER - TY - JOUR A1 - Mitesser, Oliver A1 - Weissel, Norbert A1 - Strohm, Erhard A1 - Poethke, Hans-Joachim T1 - Adaptive dynamic resource allocation in annual eusocial insects: Environmental variation will not necessarily promote graded control N2 - Background: According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability. To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem. Results: 1) The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2) Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4) When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations. Conclusion: Up to now bet-hedging as an evolutionary response to variation in season length has been the main argument to explain field observations of graded resource allocation in annual eusocial insect species. However, our model shows that the effect of moderate fluctuations of environmental conditions does not select for deviation from the classical bang-bang strategy and that the evolution of graded allocation strategies can be triggered only by extreme fluctuations. Detailed quantitative observations on resource allocation in eusocial insects are needed to analyse the relevance of alternative explanations, e.g. logistic colony growth or reproductive conflict between queen and workers, for the evolution of graded allocation strategies. KW - Insekten KW - Fitness KW - Evolution KW - Sozialität KW - resource allocation KW - fitness KW - evolution KW - eusociality KW - insect Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45412 ER - TY - THES A1 - Homburg, Stefan T1 - Untersuchungen zur Molekularbiologie von Escherichia coli-Wildstämmen T1 - Investigations on the molecular biology of Escherichia coli wildtype strains N2 - Eine eindeutige Unterscheidung zwischen extraintestinal pathogenen (ExPEC) und kommensalen E. coli-Stämmen zu treffen, fällt häufig schwer, da Virulenz-assoziierte Faktoren von ExPEC auch in kommensalen Stämmen gefunden werden können. Als naher Verwandter des uropathogenen Isolates E. coli CFT073 weist der apathogene, kommensale Stamm E. coli Nissle 1917 (O6:K5:H1) die Expression einer Vielzahl solcher „ExPEC-Virulenzfaktoren“ auf. Dazu gehören verschiedene Fimbrien, Siderophore und Proteine, die an der Biofilmbildung beteiligt sind. Der Vergleich des Stammes mit ExPEC-Isolaten lässt daher Rückschlüsse auf die Funktion dieser Faktoren im jeweiligen ökologischen Kontext zu. E. coli Nissle 1917 bildet den sog. rdar-Morphotyp aus, eine multizelluläre Struktur, die auf der Koexpression von Zellulose und Curli-Fimbrien beruht. Dieser findet sich bei vielen E. coli und Salmonella-Spezies, tritt aber in der Regel nur bei Temperaturen unterhalb 30 °C auf. E. coli Nissle 1917 hingegen weist diesen Phänotyp auch bei 37 °C auf, was vermutlich die Kolonisierungsfähigkeit gegenüber anderen kommensalen E. coli erhöht. Hier konnte demonstriert werden, dass die Expression des rdar-Morphotyps bei E. coli Nissle 1917 unabhängig von den bisher beschriebenen Regulatoren CsgD und YaiC ist. Mittels Mutagenese mit dem Transposon miniTn5 wurde nach rdar-negativen Klonen gesucht mit dem Ziel, einen möglichen übergeordneten Regulator dieses Phänotyps zu identifizieren. Bei dieser Untersuchung wurden einige Gene ermittelt, die bislang nicht dafür bekannt waren, die Expression von Zellulose oder Curli-Fimbrien zu beeinflussen. Während die Funktion vieler der ermittelten ORFs unbekannt war, hatte vor allem die Inaktivierung von Genen, die an der Biosynthese von Oberflächenstrukturen (Fimbrien, Kapsel, Colansäure, LPS) einen veränderten Phänotyp zur Folge. Allerdings konnte in den wenigsten Fällen ein Zusammenhang zu Curli- oder Zellulosesynthese hergestellt werden. Es zeigte sich, dass die Regulation des rdar-Morphotyps offenbar komplexer und von mehr Faktoren zumindest indirekt abhängig ist, als bislang beschrieben. Im zweiten Teil dieser Arbeit wurde eine 55 kb große genomische Insel untersucht, die im asnW-tRNA-Lokus inseriert ist und die Proteine für die Synthese eines hybriden nichtribosomalen Peptid-Polyketids kodiert. Die Insel konnte mittels PCR in extraintestinal pathogenen sowie kommensalen Isolaten der phylogenetischen Gruppe B2 nachgewiesen werden, darunter die Stämme E. coli Nissle 1917, IHE3034, CFT073 und J96. Eine Kokultivierung von HeLa-Zellen mit diesen Bakterien hatte eine Blockierung des Zellzyklus und Megalozytose (zytopathischer Effekt) zur Folge. Die Deletion der asnW-Insel führte zur Aufhebung des zytopathischen Phänotyps, der durch Einbringen des Genclusters auf einem BAC-Vektor wieder hergestellt werden konnte. Der zytopathische Effekt konnte nur nach direktem Kontakt der Bakterien mit HeLa-Zellen beobachtet werden und war weder durch Bakterienlysate, abgetötete Bakterien oder Kulturüberstände zu erzielen. Das PKS/NRPS-Gencluster umfasst 18 ORFs (clbA bis clbR), von denen 17 an der Synthese der aktiven Komponente beteiligt sind. Die Anzahl der Genprodukte und die Abfolge der putativen Domänen unterscheidet sich dabei von allen bislang beschriebenen PKS/NRPSSystemen. Untersuchungen zur Transkription ergaben drei monocistronisch und vier teilweise sehr große (bis 23 kb) polycistronisch transkribierte Einheiten aus bis zu sechs ORFs. Zudem konnte eine konstitutive Transkription aller ORFs festgestellt werden, wenngleich in unterschiedlicher Stärke. Nach Kontakt mit HeLa-Zellen wurde keine erhöhte Transkription oder Promotoraktivität einzelner ORFs festgestellt. Daher scheint die Kontaktabhängigkeit des zytopathischen Effekts nicht auf einer durch HeLa-Zellen hervorgerufenen Induktion der PKS/NRPS-Expression zu beruhen. Die Kontaktabhängigkeit konnte durch die Induktion bzw. Überexpression einer PKS/NRPS (clbB), den putativen Schlüsselenzymen Thioesterase (clbQ) und Phosphopantetheinyl-Transferase (clbA) oder dem möglichen Regulator clbR nicht überwunden werden. Mittels Luziferase-Reportergenfusionen konnte ein Einfluss unterschiedlicher Medien und Kulturbedingungen auf die Promotoraktivität einzelner Gene festgestellt werden. Dies wurde auf den Einfluss des BarA/UvrY- Zweikomponentensystems zurückgeführt, welches über CsrA/CsrBC den Kohlenstoff-Metabolismus von E. coli post-transkriptional reguliert. Die natürliche uvrY-Deletionsmutante UPEC 536 wies trotz des Besitzes des kompletten PKS/NRPS-Genclusters keinen zytopathischen Effekt auf. Dieser konnte jedoch durch Komplementation mit uvrY wieder hergestellt werden. Dies ist der erste Hinweis für einen außerhalb der asnW-Insel liegenden Regulationsmechanismus der PK/NRP-Synthese. Die Funktion des Peptid-Polyketids in vivo bleibt weiterhin unklar und könnte sowohl Fitness als auch Virulenz von E. coli beeinflussen. N2 - In many cases, it is difficult to draw a clear distinction between extraintestinal pathogenic (ExPEC) and commensal E. coli strains as virulence-associated factors of ExPEC can also be found in commensal strains. Being closely related to the uropathogenic strain CFT073 E. coli Nissle 1917 (O6:K5:H1) exhibits expression of several of such “ExPEC virulence factors”. Belonging to those are various fimbriae, siderophores, and proteins involved in biofilm formation. Therefore, the comparison of ExPEC isolates and E. coli Nissle 1917 can reveal insights into the function of these factors within the respective ecological context. E. coli Nissle 1917 exhibits the so-called rdar morphotype, a multicellular structure based on the co-expression of cellulose and curli fimbriae. It can be found in many E. coli and Salmonella species, but is usually restricted to temperatures below 30 °C. However, E. coli Nissle 1917 features this phenotype also at 37 °C which might increase its colonization ability compared to other commensal E. coli. Here, it could be demonstrated that expression of the rdar morphoype in E. coli Nissle 1917 is independent of the two regulators described so far, CsgD and YaiC. Thus, by applying transposon mutagenesis using miniTn5 it was screened for rdar-negative mutants. The aim was to discover a superordinate regulator of this phenotype. During this investigation, several genes were identified which so far had not been reported to influence expression of cellulose or curli fimbriae. While the function of many of the determined ORFs was unknown, the inactivation primarily of genes involved in the biosynthesis of surface structures (fimbriae, capsule, colanic acid, LPS) resulted in an altered phenotype. However, only in a few cases a connection to the biosynthesis of curli fimbriae or cellulose could be established. In conclusion, the regulation of curli and cellulose biosysnthesis proved to be more complex and dependent – at least indirectly – on more factors than previously described. In the second part of this thesis, a genomic island, 55 kb in size and inserted into the asnW-tRNA locus, was investigated, which encodes proteins necessary for the synthesis of a hybrid nonribosomal peptide-polyketide. By PCR the island was proven to be present in extraintestinal pathogenic as well as in commensal isolates of the phylogenetic group B2, among those the strains E. coli Nissle 1917, IHE3034, CFT073, and J96. Cocultivation of HeLa cells with those bacteria induced cell cycle arrest and megalocytosis (cytopathic effect). Deletion of the asnW island resulted in abolition of the cytopathic effect, which could be restored by introduction of a BAC vector containing the gene cluster. The cytopathic effect was only observed after direct contact of the bacteria with HeLa cells and could not be achieved using bacterial lysates, killed bacteria or culture supernatants. The PKS/NRPS gene cluster comprises 18 ORFs (clbA to clbR) of which 17 are involved in the synthesis of the active compound. The number of gene products and the sequence of putative domains differ from those of all PKS/NRPS systems described so far. Investigations on the transcription of the island revealed three monocistronically transcribed units and four polycistrons of sizes up to 23 kb. In addition, a constitutive transcription of every ORF was observed, albeit at variable levels. Upon cell contact, neither elevated transcription nor different promoter activities of single ORFs were observed. Thus, the contact dependence of the cytopathic effect does not seem to result from an induction of expression caused by HeLa cells. The contact dependence could not be overcome by induction or overexpression of either a PKS/NRPS (clbB), the putative key enzymes thioesterase (clbQ) and phosphopantetheinyl transferase (clbA), or the potential regulator clbR. Using luciferase reporter gene fusions an influence of diverse media and culture conditions on the promoter activities of singele genes was detected. This was ascribed to the influence of the BarA/UvrY two-component system, which regulates the carbon metabolism of E. coli on the post-transcriptional level via CsrA/CsrBC. The natural uvrY deletion mutant UPEC 536, despite containing the complete PKS/NRPS gene cluster, did not exhibit an cytopathic effect. However, this feature could be restored by complementation with uvrY. This is the first evidence for an regulatory mechanism of the PK/NRP synthesis located beyond the asnW island. The in vivo function of the peptide-polyketide so far remains unclear, but it might affect fitness as well as virulence of E. coli. KW - Escherichia coli KW - Virulenzfaktor KW - Biofilm KW - Molekulargenetik KW - Fitness KW - Biofilm KW - Polyketid KW - Regulation KW - fitness KW - biofilm KW - polyketide KW - regulation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22884 ER -