TY - JOUR A1 - Bohnert, Simone A1 - Trella, Stefanie A1 - Preiß, Ulrich A1 - Heinsen, Helmut A1 - Bohnert, Michael A1 - Zwirner, Johann A1 - Tremblay, Marie-Ève A1 - Monoranu, Camelia-Maria A1 - Ondruschka, Benjamin T1 - Density of TMEM119-positive microglial cells in postmortem cerebrospinal fluid as a surrogate marker for assessing complex neuropathological processes in the CNS JF - International Journal of Legal Medicine N2 - Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction. KW - cerebrospinal fluid KW - forensic neuropathology KW - forensic neurotraumatology KW - immunohistochemistry KW - immunocytochemistry KW - biomarker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325009 VL - 136 IS - 6 ER - TY - JOUR A1 - Bohnert, Simone A1 - Georgiades, Kosmas A1 - Monoranu, Camelia-Maria A1 - Bohnert, Michael A1 - Büttner, Andreas A1 - Ondruschka, Benjamin T1 - Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications JF - International Journal of Legal Medicine N2 - The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse. KW - immunohistochemistry KW - drug abuse KW - forensic neuropathology KW - neuroinflammation KW - neurotoxicity KW - microglia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266934 SN - 1437-1596 VL - 135 IS - 6 ER - TY - JOUR A1 - Bohnert, Simone A1 - Seiffert, Anja A1 - Trella, Stefanie A1 - Bohnert, Michael A1 - Distel, Luitpold A1 - Ondruschka, Benjamin A1 - Monoranu, Camelia-Marie T1 - TMEM119 as a specific marker of microglia reaction in traumatic brain injury in postmortem examination JF - International Journal of Legal Medicine N2 - The aim of the present study was a refined analysis of neuroinflammation including TMEM119 as a useful microglia-specific marker in forensic assessments of traumatic causes of death, e.g., traumatic brain injury (TBI). Human brain tissue samples were obtained from autopsies and divided into cases with lethal TBI (n = 25) and subdivided into three groups according to their trauma survival time and compared with an age-, gender-, and postmortem interval-matched cohort of sudden cardiovascular fatalities as controls (n = 23). Brain tissue samples next to cortex contusions and surrounding white matter as well as samples of the ipsilateral uninjured brain stem and cerebellum were collected and stained immunohistochemically with antibodies against TMEM119, CD206, and CCR2. We could document the highest number of TMEM119-positive cells in acute TBI death with highly significant differences to the control numbers. CCR2-positive monocytes showed a significantly higher cell count in the cortex samples of TBI cases than in the controls with an increasing number of immunopositive cells over time. The number of CD206-positive M2 microglial cells increased survival time-dependent. After 3 days of survival, the cell number increased significantly in all four regions investigated compared with controls. In sum, we validate a specific and robustly expressed as well as fast reacting microglia marker, TMEM119, which distinguishes microglia from resident and infiltrating macrophages and thus offers a great potential for the estimation of the minimum survival time after TBI. KW - cerebrospinal fluid KW - forensic neuropathology KW - forensic neurotraumatology KW - immunohistochemistry KW - biomarker Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235346 SN - 0937-9827 VL - 134 ER -