TY - JOUR A1 - Quast, Helmut A1 - Gescheidt, Georg A1 - Spichty, Martin T1 - Topological dynamics of a radical ion pair: Experimental and computational assessment at the relevant nanosecond timescale JF - Chemistry N2 - Chemical processes mostly happen in fluid environments where reaction partners encounter via diffusion. The bimolecular encounters take place at a nanosecond time scale. The chemical environment (e.g., solvent molecules, (counter)ions) has a decisive influence on the reactivity as it determines the contact time between two molecules and affects the energetics. For understanding reactivity at an atomic level and at the appropriate dynamic time scale, it is crucial to combine matching experimental and theoretical data. Here, we have utilized all-atom molecular-dynamics simulations for accessing the key time scale (nanoseconds) using a QM/MM-Hamiltonian. Ion pairs consisting of a radical ion and its counterion are ideal systems to assess the theoretical predictions because they reflect dynamics at an appropriate time scale when studied by temperature-dependent EPR spectroscopy. We have investigated a diketone radical anion with its tetra-ethylammonium counterion. We have established a funnel-like transition path connecting two (equivalent) complexation sites. The agreement between the molecular-dynamics simulation and the experimental data presents a new paradigm for ion–ion interactions. This study exemplarily demonstrates the impact of the molecular environment on the topological states of reaction intermediates and how these states can be consistently elucidated through the combination of theory and experiment. We anticipate that our findings will contribute to the prediction of bimolecular transformations in the condensed phase with relevance to chemical synthesis, polymers, and biological activity. KW - ion pairing KW - radical anion KW - kinetics KW - thermodynamics KW - molecular dynamics KW - QM/MM KW - EPR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285195 SN - 2624-8549 VL - 2 IS - 2 SP - 219 EP - 230 ER - TY - THES A1 - Le, Thien Anh T1 - Theoretical investigations of proton transfer and interactions or reactions of covalent and non-covalent inhibitors in different proteins T1 - Theoretische Untersuchungen des Protontransfers und Interaktion oder Reaktion von kovalenten und nicht-kovalenten Inhibitoren in verschiedenen Proteinen N2 - Nowadays, computational-aided investigations become an essential part in the chemical, biochemical or pharmaceutical research. With increasing computing power, the calculation of larger biological systems becomes feasible. In this work molecular mechanical (MM) and quantum mechanical approaches (QM) and the combination of both (QM/MM) have been applied to study several questions which arose from different working groups. Thus, this work comprises eight different subjects which deals with chemical reactions or proton transfer in enzymes, conformational changes of ligands or proteins and verification of experimental data. This work firstly deals with reaction mechanisms of aromatic inhibitors of cysteine proteases which can be found in many organisms. These enzymes are responsible for various cancer or diseases as for example Human African Trypanosomiasis (HAT) or the Chagas disease. Aromatic SNAr-type electrophiles might offer a new possibility to covalently modify these proteases. Quantum mechanical calculations have been performed to gain insights into the energetics and possible mechanisms. The next chapter also deals with Trypanosomiasis but the focus was set on a different enzyme. The particularity of Trypanosomiasis is the thiol metabolism which can also be modified by covalent inhibitors. In this context, the wild type and point mutations of the enzyme tryparedoxin have been investigated via molecular dynamic (MD) simulations to examine the influence of specific amino acids in regard to the inhibitor. Experimental data showed that a dimerization of the enzyme occurs if the inhibitor is present. Simulations revealed that the stability of the dimer decreases in absence of the inhibitor and thus confirms these experiments. Further investigations concerning cysteine proteases such as cruzain and rhodesain have been conducted with respect to experimental kinetic data of covalent vinylsulfone inhibitors. Several approaches such as QM or QM/MM calculations and docking, MD or MMPBSA/MMGBSA simulations have been applied to reproduce these data. The utilization of force field approaches resulted in a qualitatively accurate prediction. The kinase AKT is involved in a range of diseases and plays an important role in the formation of cancer. Novel covalent-allosteric inhibitors have been developed and crystallized in complex with AKT. It was shown that depending on the inhibitor a different cysteine residue is modified. To investigate these differences in covalent modification computational simulations have been applied. Enoyl-(acyl carrier) (ENR) proteins are essential in the last step of the fatty acid biosynthesis II (FAS) and represent a good target for inhibition. The diphenylether inhibitor SKTS1 which was originally designed to target the ENR’s of Staphylococcus aureus was also crystallized in InhA, the ENR of Mycobacterium tuberculosis (TB). Crystal structures indicate a change of the inhibitor's tautomeric form. This subject was investigated via MD simulations. Results of these simulations confirmed the tautomerization of the inhibitor. This work also deals with the development of a covalent inhibitor originating from a non-covalent ligand. The target FadA5 is an essential enzyme for the degradation of steroids in TB and is responsible for chronic tuberculosis. This enzyme was crystallized in complex with a non-covalent ligand which served as starting point for this study. Computations on QM or QM/MM level and docking and MD simulations have been applied to evaluate potential candidates. The next chapter focuses on the modification of the product spectrum of Bacillus megaterium levansucrase, a polymerase which catalyzes the biosynthesis of fructans. The covalent modification of the wild type or mutants of the enzyme lead to an accumulation of oligosaccharides but also to polymers with higher polymerization degree. To understand these changes in product spectra MD simulations have been performed. Finally, the proton transfer in catalytic cysteine histidine dyads was investigated. The focus was set on the influence of the relaxation of the protein environment to the reaction. Calculations of the enzymes FadA5 and rhodesain revealed that the preferred protonation state of the dyade depends on the protein environment and has an impact on the reaction barrier. Furthermore, the adaptation of the environment to a fixed protonation state was analyzed via MD simulations. N2 - Heutzutage sind computergestützte Untersuchungen ein essentieller Teil in der chemischen, biochemischen oder pharmazeutischen Forschung. Durch die in den Jahren gestiegene Rechenleistung ist die Berechnung biologischer Systeme möglich. Im Rahmen dieser Arbeit wurden molekularmechanische (MM) und quantenmechanische (QM) Methoden sowie die Kombination beider (QM/MM) für verschiedene Studien eingesetzt, die teilweise aus Fragestellungen verschiedener Arbeitsgruppen hervorgegangen sind. Dadurch umfasst diese Arbeit acht verschiedene Themenkomplexe, bei denen chemische Reaktionen, aber auch der Protonentransfer in Enzymen, Konformationsänderungen von Liganden oder Proteinen und die Verifizierung experimenteller Daten im Fokus standen. Die Arbeit befasst sich anfangs mit Reaktionsmechansimen aromatischer Inhibitoren für Cysteinproteasen, Enzyme, welche in vielen Organismen enthalten sind. Diese Enzyme sind für verschiedene Karzinome oder Krankheiten wie der Afrikanischen Trypanosomiasis oder der Chagas-Krankheit verantwortlich. Aromatische SNAr-Elektrophile bieten hierbei eine neue Möglichkeit der kovalenten Modifikation dieser Proteasen. Quantenmechanische wurden durchgeführt, um Einblicke in die Energetik und mögliche Mechanismen zu erhalten. Das nächste Kapitel befasst sich ebenfalls mit Trypanosomiasis, setzt aber den Fokus auf ein anderes Enzym. Die Besonderheit von Trypanosomiasis ist der Thiol Metabolismus, welcher durch kovalente Inhibitoren modifiziert werden kann. In diesem Kontext wurden der Wildtyp und Punktmutationen des Enzyms Tryparedoxin mittels Molekulardynamik Simulationen untersucht, um Interaktionen einzelner Aminosäuren mit dem kovalenten Inhibitor zu evaluieren. Experimentelle Daten zeigten, dass eine Dimerisierung des Enzyms in Anwesenheit des Inhibitors stattfindet. Durch MD-Simulationen konnte gezeigt werden, dass die Stabilität des Dimers in Abwesenheit des Inhibitors sinkt, wodurch experimentellen Daten bestätigt wurden. Weitere Untersuchungen zu Cysteinproteasen wie Cruzain und Rhodeasin wurden durchgeführt, um experimentelle kinetische Daten von kovalenten Vinylsulfon Inhibitoren zu reproduzieren. Hierbei wurden Methoden wie QM oder QM/MM Rechnungen aber auch Docking, MD und MMPBSA/MMGBSA Simulationen angewandt, um diese Daten zu reproduzieren. In den Untersuchungen zeigte sich, dass die Verwendung der Kraftfeld-basierten Methoden zu qualitativ richtigen Vorhersagen führte. Die Kinase AKT ist in einer Reihe von Krankheiten involviert und spielt eine wichtige Rolle bei der Entstehung von Krebs. Neue kovalent-allosterische Inhibitoren wurden entwickelt und im kovalenten Komplex mit AKT kristallisiert. Die Kristallstrukturen zeigten, dass je nach Inhibitor ein anderes Cystein adressiert wurde. Um diese Unterschiede zu untersuchen, wurden computergestützte Simulationen verwendet. Enoyl-(acyl carrier) (ENR) Proteine sind essentiell für den letzten Schritt in der Fettsäurebiosynthese II (FAS) und bilden ein gutes Target zur Inhibition. Der Diphenylether Inhibitor SKTS1, welchen man ursprünglich als Target für den ENR von Staphylococcus aureus entwarf, wurde auch in InhA, dem ENR von Mycobacterium Tuberculosis (TB), kristallisiert. Die Kristallstrukturen weisen je nach Protein auf einen Wechsel der tautomeren Form des Inhibitors hin. Dieser Sachverhalt wurde mittels MD Simulationen untersucht. Hierbei zeigten die Ergebnisse eine Übereinstimmung mit den experimentellen Daten. Diese Arbeit befasst sich ebenfalls mit der Entwicklung eines kovalenten Inhibitors ausgehend von einem nicht-kovalenten Liganden. Das Target FadA5 ist ein integrales Enzym zur Degradation von Steroiden in TB und ist für die chronische Tuberkulose verantwortlich. Dieses Enzym wurde im Komplex mit einem nicht-kovalenten Liganden kristallisiert, welches als Startpunkt dieser Untersuchungen diente. QM, QM/MM, Docking und MD Simulationen wurden hierbei verwandt, um potentielle Kandidaten zu evaluieren. Das nächste Kapitel befasst sich mit der Modifikation des Produktspektrums von Bacillus megaterium Levansucrase, eine Polymerase, welche die Biosynthese von Fruktanen katalysiert. Durch kovalente Modifikatoren im Wildtyp oder bei Mutanten des Enzyms konnte sowohl eine Anreicherung von Oligosacchariden, aber auch von Polymeren mit höherem Polymerisationsgrad erzielt werden. Um diese Änderungen im Produktspektrum zu verstehen, wurden MD Simulationen durchgeführt. Schließlich wurde die Untersuchung des Protonentransfers in katalytischen Cystein Histidin Dyaden durchgeführt. Hierbei stand der Einfluss der Relaxation der Proteinumgebung auf diese Reaktion im Fokus. Berechnungen in den Enzymen FadA5 und Rhodesain zeigten, dass der präferierte Protonierungszustand der Diade von der Proteinumgebung abhängt und einen großen Einfluss auf die Reaktionsbarriere hat. Um dynamische Effekte einzubeziehen, wurde die Adaption der Umgebung auf einen fixierten Protonierungszustand mittels MD Simulationen analysiert. KW - Computational chemistry KW - Molekularbewegung KW - QM/MM KW - proteins KW - covalent and non-covalent inhibitors KW - Protonentransfer KW - Enzyminhibitor KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170511 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer JF - Frontiers in Chemistry N2 - The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors. KW - Axl tyrosine kinase KW - anti-cancer drug-like molecules KW - rational drug design KW - molecular docking KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199505 SN - 2296-2646 VL - 7 IS - 920 ER - TY - THES A1 - Kuhn, Maximilian T1 - Strukturbasiertes Design von MIP-Inhibitoren und computergestützte Selektivitätsuntersuchung gegenüber MIP- und humanen FKB-Proteinen T1 - Structure-based design of MIP-Inhibitors and computer-aided selectivity studies towards MIP and human FKB proteins N2 - Bakterielle und parasitäre MIP-Proteine stellen wichtige Virulenzfaktoren dar, deren Inhibition das Überleben der Erreger sowie deren Penetration in menschliche Zellen stark einschränken kann. In dieser Arbeit standen die MIP-Proteine von Burkholderia pseudomallei (Auslöser der Melioidose) und Legionella pneumophila (Legionärskrankheit) im Fokus. Außerdem wurde das MIP-Protein von Trypanosoma cruzi (Chagas-Krankheit) untersucht. Die strukturverwandten humanen FKB-Proteine FKBP12 und FKBP52 sind relevante „off-targets“, wie Experimente mit Knockout-Mäusen gezeigt haben. Ziel dieser Arbeit war die Verbesserung von bekannten MIP-Inhibitoren im Hinblick auf ihre Affinität und Selektivität für MIP-Proteine gegenüber den beiden genannten FKB-Proteinen bei gleichzeitig verbesserter Löslichkeit, mit Hilfe von in silico Methoden. Ausgangspunkt waren hierbei zwei von Dr. Christina Juli und Dr. Florian Seufert entwickelte Leitstrukturen, welche ein Pipecolinsäuregrundgerüst aufweisen. Diese Referenzliganden beinhalten einen 3,4,5-Trimethoxyphenylring (TMPR, vgl. Ref_t) bzw. einen Pyridinylring (Ref_p). Beim Vergleich von insgesamt 32 MIP- und FKB-Proteinen konnten in zwei Loop-Bereichen, welche 50er bzw. 80er Loop genannt werden, relevante Unterschiede in der Aminosäuresequenz identifiziert werden. Die Nummerierung bezieht sich stets auf FKBP12. Diese Unterschiede ließen sich zum Design von vergleichsweise selektiv an MIP-Proteine bindenden Molekülen nutzen. Der 50er Loop ist in nahezu allen MIP-Proteinen (jedoch nicht in BpsMIP) im Vergleich zu den FKB-Proteinen um zwei Aminosäuren verkürzt. Dadurch befindet sich das Proteinrückgrat von LpnMIP (Gln49) und TcrMIP (Arg49) näher am Zentrum der Bindetasche (definiert als Ile56, welches durch die Pipecolinsäureesterfunktion der Liganden adressiert wird). MD-Simulationen der beiden Apoproteine belegten, dass die geringere Distanz nicht durch Artefakte beim Modellieren der Strukturen bedingt ist. Aufbauend auf dieser Erkenntnis wurde gezeigt, dass der Pyridinylring von Ref_p eine Wasserstoffbrücke zu Gln49 ausbildet. Experimentell wurde dieser Befund durch eine entsprechende chemische Verschiebung der Aminosäure im NMR-Experiment von Dr. Kristian Schweimer bestätigt. Durch Überbrückung des Pipecolinsäurerings (Ligand 6bp) konnte die Wasserstoffbrücke in MD-Simulationen weiter stabilisiert werden. Durch Rechnungen zur Abschätzung der freien Bindungsenthalpien (mittels LIE und MM/GBSA) wurde eine erhöhte Affinität von 6bp im Vergleich zu Ref_p in LpnMIP ermittelt. Im Laufe der Arbeit wurde anhand von pIC50-Werten, welche von Dr. Mathias Weiwad bestimmt wurden, erkannt, dass Liganden mit Pyridinylring oftmals eine bessere Affinität in LpnMIP aufweisen als die entsprechenden Liganden mit TMPR. Durch MD Simulationen wurde nachgewiesen, dass der TMPR in LpnMIP nur schwer an der in den anderen Proteinen bevorzugten Position binden kann. Grund hierfür ist die Mutation einer Aminosäure (zu Pro57) in diesem Bereich von LpnMIP: Diese verfügt über eine wenig flexible Seiten-kette, an welche sich der TMPR auf Grund seiner Rigidität nicht anpassen kann, was die Interaktion zwischen Protein und Ligand stört. Der Pyridinylring von Ref_p ist hiervon nicht betroffen, da er bevorzugt an einer anderen Stelle (Gln49, s. o.) bindet. Der 80er Loop weist in vielen MIP-Proteinen deutlich hydrophobere Aminosäuren auf als in FKB-Proteinen. Von besonderem Interesse ist die Position 90, da hier in BpsMIP und LpnMIP sterisch weniger anspruchsvolle Aminosäuren (Val, Pro) vorliegen als in den bei-den FKB-Proteinen (Ile, Lys). Dieser Unterschied wurde mit kleinen hydrophoben Substituenten am Phenylring der Liganden adressiert. Bereits im Docking zeigten sich die positiven Effekte der para-Substitution durch Halogenatome oder eine Methylgruppe. Die von Dr. Mathias Weiwad und Dr. Mirella Vivoli ermittelten pIC50- bzw. pKi-Werte bestätigten diesen Trend. Zugleich nahm die Affinität zu FKBP12 deutlich ab. Bei der Untersuchung der Referenzliganden sowie deren Chlor- und Bromderivate in MD-Simulationen zeigte sich, dass der Phenylring der Liganden in den MIP-Proteinen bevorzugt in Richtung des 80er Loops orientiert ist; in den FKB-Proteinen liegt er hingegen um etwa 110° gedreht vor und kann somit schlechter mit der Bindetasche interagieren. Besonders ausgeprägt ist dieser Effekt in FKBP12. Basierend auf diesen Ergebnissen wurde der Phenylring durch einen 4-Bromo-1H-imidazol-2-ylsubstituenten ersetzt (Ligand 8ap). Dieser ist in der Lage, in der erwarteten Orientierung im Bereich des 80er Loops von BpsMIP zu binden und gleichzeitig eine stabile Wasserstoffbrücke zu Asp37 auszubilden. Hieraus resultiert für den Liganden eine deutlich höhere Affinität in LIE- und MM/GBSA-Rechnungen; in FKBP12 blieb sie auf Grund der dort instabilen Interaktion unverändert. Die berechneten Energien können unmittelbar für einen relativen Vergleich verschiedener Liganden in einer Bindetasche verwendet werden. Für die Vorhersage von pKi- bzw. pIC50-Werten in den verschiedenen Proteinen ist eine Kalibrierung gegen die gemessenen Affinitäten erforderlich. Dies wurde für BpsMIP durchgeführt, indem eine lineare Korrelation zwischen den pKi- bzw. pIC50-Werten und den mit MM/GBSA ermittelten Energien aufgestellt wurde. Für LIE wurde auf publizierte Werte von Lamb et al. zurückgegriffen. Die berechneten Affinitäten stimmen für die bereits getesteten Inhibitoren gut mit den experimentellen pKi- und pIC50-Werten überein. Anhand der Modelle werden für 8ap Werte vorhergesagt, die besser als die experimentellen Affinitäten bekannter Liganden sind. Idealerweise können auch aus den Scores, die durch Docking erhalten werden, bereits Rückschlüsse auf die Affinitäten der Liganden gezogen werden. Für die untersuchten Proteine war dies, auf Grund des engen Bereichs der experimentell ermittelten pKi- und pIC50-Werte, nicht mit hinreichender Richtigkeit möglich. Um die Scores dennoch für die Beurteilung neuer Liganden verwenden zu können, wurden logistische Regressionsmodelle erstellt. Anhand dieser kann abgeschätzt werden, ob ein Molekül in BpsMIP submikromolare Affinität aufweist. Die Richtigkeit dieser Vorhersagemodelle konnte durch die Berücksichtigung dreier weiterer Deskriptoren (Konfiguration am Stereozentrum der Pipecolinsäure, Molekulargewicht und logD-Wert) deutlich verbessert werden, wobei die AUC der entsprechenden ROC-Kurven Werte bis zu 0.9 erreichte. Diese Modelle können für die Postprozessierung eines Dockings angewendet werden, um die vielversprechendsten Kandidaten zu identifizieren und anschließend in rechnerisch anspruchsvolleren MD-Simulationen genauer zu untersuchen. Mit dieser Arbeit wurde zur Weiterentwicklung der Leitstrukturen Ref_t und Ref_p beigetragen. Viele der getesteten Derivate wiesen deutlich verbesserte Löslichkeit bei gleichbleibender Affinität auf. Ferner wurden erstmalig detailliert die Unterschiede in den Bindetaschen zwischen 32 MIP- und FKB-Proteinen evaluiert. Hiervon wurden fünf in MD-Simulationen als Apoprotein und im Komplex mit verschiedenen Inhibitoren verglichen. Anhand dieser Simulationen wurde nachgewiesen, dass jeweils eine Aminosäure in BpsMIP und LpnMIP im Vergleich zum wichtigsten „off-target“ FKBP12 selektiv durch eine Wasserstoffbrücke adressiert werden kann. Durch LIE- und MM/GBSA-Rechnungen konnte gezeigt werden, dass in diesen hochkonservierten Bindetaschen eine bedeutende Modulation der Affinität zugunsten von BpsMIP möglich ist. N2 - Bacterial and parasitic MIP proteins constitute important virulence factors. Inhibiting these proteins can considerably reduce the survival of the pathogens as well as their penetration into human host cells. The work presented in this thesis focused on the MIP proteins of Burkholderia pseudomallei (the causative agent of melioidosis) and Legionella pneumophila (Legionnaires’ disease). Furthermore, the MIP protein of Trypanosoma cruzi (Chagas disease) was also investigated. The structurally homologous human FKB proteins FKBP12 and FKBP52 were taken into account as relevant off-targets. The aim of this thesis was to improve MIP inhibitors by means of in silico methods with respect to affinity and selectivity (for MIP proteins over FKBP12 and FKBP52) as well as solubility. The starting point for this task were two lead structures with a pipecolic acid scaffold from the work of Dr. Christina Juli and Dr. Florian Seufert. These reference ligands contain a 3,4,5-trimethoxyphenyl ring (TMPR, cf. Ref_t) or a pyridinyl ring (Ref_p). By comparison of 32 MIP and FKB proteins major differences with regard to the amino acid sequence could be identified in two loop regions, the so called 50s and 80s loop (numbering always with respect to FKBP12). It was possible to utilise these differences for the design of molecules with preferential binding to MIP proteins. The 50s loop is truncated by two amino acids in nearly all MIP proteins compared to the FKB proteins, except for BpsMIP. Thus, the protein backbone of LpnMIP (Gln49) and TcrMIP (Arg49) is located closer to the centre of the binding pocket. The centre is defined as Ile56, which is binding to the pipecolic ester function of the ligands. MD simulations of both apoproteins proved that the smaller distance is not caused by artefacts introduced during modelling of the structures. Expanding on this knowledge, it could be shown that the pyridinyl ring of Ref_p forms a hydrogen bond to Gln49. This finding was proven ex-perimentally by a corresponding chemical shift of the amino acid in an NMR experiment conducted by Dr. Kristian Schweimer. The hydrogen bond was stabilised further in MD simulations via bridging of the pipecolic acid ring (ligand 6bp). Calculations by MM/GBSA and LIE, estimating the binding free energies of the ligands, yielded im-proved affinity for 6bp compared to Ref_p in LpnMIP. It was noted in the course of this work, based on pIC50 measurements conducted by Dr. Mathias Weiwad, that ligands containing a pyridinyl ring often exhibit better affinity in LpnMIP than their corresponding counterparts with a TMPR. It could be shown with MD simulations that the TMPR is barely able to bind to LpnMIP at the position preferred in the other proteins. This is caused by mutation of an amino acid (to Pro57) in this region of LpnMIP. Due to its rigidity, the TMPR is not able to adjust to the hardly flexible side chain of proline. Consequently, the interaction between protein and ligand is disrupted. The pyridinyl ring of Ref_p is not affected by this mutation since it binds at another position (Gln49, see above). The 80s loop contains more hydrophobic amino acids in MIP proteins than in FKB proteins. Position 90 is of particular interest, as there are sterically less demanding amino acids in BpsMIP and LpnMIP (Val, Pro) than in both FKB proteins (Ile, Lys). This difference was addressed with small hydrophobic substituents at the ligands’ phenyl ring. The favourable effects of the substitution in para-position by halogen atoms or a methyl group could be observed in initial docking experiments. pIC50 and pKi values measured by Dr. Mathias Weiwad und Dr. Mirella Vivoli confirmed this trend. Furthermore, the affinity for FKBP12 clearly decreased. MD simulations of both reference ligands as well as their derivatives substituted with chlorine or bromine showed that the phenyl ring preferentially adopts a conformation pointing towards the 80s loop in MIP proteins. In contrast, the phenyl ring is rotated by approximately 110° in FKB proteins, leading to decreased interactions with the binding pocket. This effect is especially pronounced in FKBP12. Based on these results, the phenyl ring was substituted by 4-Bromo-1H-imidazol-2-yl (ligand 8ap). A ligand containing this substituent can bind next to the 80s loop of BpsMIP maintaining the previously described orientation and simultaneously form a stable hydrogen bond to Asp37. Hence, a considerably higher binding affinity of this ligand to BpsMIP was predicted via LIE and MM/GBSA calculations. There were no changes in affinity for FKBP12 due to the instable interaction in this protein. The calculated energies can directly be used to rank different ligands in a binding pocket. In order to predict pIC50 and pKi values in different proteins, these energies require calibration versus experimentally measured affinities. Such a calibration was carried out for BpsMIP by linearly correlating pIC50 and pKi values with energies gained from MM/GBSA calculations. For the LIE method, parameters published by Lamb et al. were used. Both computational approaches yielded affinities in good agreement with experimentally measured pIC50 and pKi values of known ligands. The affinities predicted by these models for 8ap are better than the inhibition constants of all currently known inhibitors. Ideally, scores obtained by docking can directly be used to gain insights into the ligands’ affinities. However, sufficient accuracy for the proteins investigated could not be gained, due to the narrow range of the experimental pIC50 and pKi values. Consequently, logistic regression models were created to allow for assessment of the ligands based on their score. These models predict whether a ligand is likely to show submicromolar affinity in BpsMIP. The accuracy of these models was considerably increased by implementing three other descriptors (configuration at the stereo centre of the pipecolic acid, molecular weight and logD value). Thus, AUCs up to 0.9 could be achieved in the corresponding ROC curves. The models can be used for postprocessing a docking calculation in order to identify the most promising ligands and subsequently investigating them with computationally more demanding MD simulations. This work contributed to the improvement of the lead structures Ref_t and Ref_p. Many of the tested derivatives exhibited increased solubility while affinity was maintained. Furthermore, differences in the binding pockets of 32 MIP and FKB proteins were evaluated in detail for the first time. Five of these proteins were compared in MD simulations, both as apoproteins as well as complexed with different inhibitors. It was proven by these simulations that one amino acid in BpsMIP as well as in LpnMIP can selectively be addressed with a hydrogen bond. These interactions cannot be formed in the most prominent off-target FKBP12. LIE and MM/GBSA calculations proved that considerable modulation of the binding affinity towards BpsMIP is possible in these highly conserved binding pockets. KW - Computational chemistry KW - Macrophage Infectivity Potentiator Protein KW - Arzneimitteldesign KW - MIP protein KW - FKBP KW - docking KW - MD simulation KW - Burkholderia pseudomallei KW - Legionella pneumophila KW - Trypanosoma cruzi KW - Drug design KW - molecular dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165757 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - In silico designed Axl receptor blocking drug candidates against Zika virus infection JF - ACS Omega N2 - After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies. KW - free energy KW - molecular docking KW - molecular dynamics KW - simulation KW - pharmacology KW - proteins KW - structure-activity relationship KW - viruses KW - Zika virus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176739 VL - 3 IS - 5 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Salvador, Ellaine A1 - Pastorin, Giorgia A1 - Förster, Carola T1 - Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate JF - International Journal of Nanomedicine N2 - In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCN-TFITC rapid dissociation as an intermediate phase. KW - endothelial cells KW - cytotoxicity KW - blood-brain barrier KW - fluorescein isothiocyanate KW - aggregation KW - molecular dynamics KW - fluorescence microscopy KW - Transwell® system KW - multiwalled carbon nanotube KW - mice Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149233 VL - 10 ER - TY - JOUR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Photochemical Chiral Symmetry Breaking in Alanine JF - Journal of Physical Chemistry A N2 - We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality. KW - circularly-polarized light KW - amino-acids KW - homochirality KW - molecular dynamics KW - dichroism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158557 UR - https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 VL - 45 IS - 120 ER - TY - THES A1 - Peinz, Ulrich T1 - Strukturbasiertes computergestütztes Wirkstoffdesign an flexiblen Proteintargets: Aldose Reduktase und Hsp70 T1 - Structure-based computer-aided drug design on flexible protein targets: aldose reductase and Hsp70 N2 - Proteine sind dynamische makromolekulare Systeme, die nativ in verschiedenen Konfor-mationen vorliegen. Besonders Proteine mit einer ausgeprägten intrinsischen Flexibilität stellen als biologische Zielstrukturen für das computergestützte strukturbasierte Wirkstoff-design auch heute noch eine große Herausforderung dar. Die vorliegende Arbeit thematisiert die computergestützte Identifizierung neuer Liganden mit inhibitorischer Aktivität für zwei strukturell sehr flexible Enzyme, die bei verschiedenen Krankheiten eine pathophysio-logische Rolle spielen. Ein Schwerpunkt lag in diesem Zusammenhang auf der Entwicklung virtueller Screeningverfahren, die es ermöglichten, die Flexibilität der Proteine adäquat zu berücksichtigen. Der erste Teil der Arbeit beschreibt ein virtuelles Screeningverfahren für die Identifizierung von Liganden einer neuen, durch Molekulardynamik (MD) Simulationen generierten Proteinkonformation der Aldose Reduktase (AR), einem Enzym, das im Zusammenhang mit der Entstehung von Folgeerkrankungen bei Diabetes mellitus steht. Die angewandte Vorgehensweise zeigt Möglichkeiten auf, wie eine ausgeprägte Proteinflexibilität mit Hilfe computerbasierter Methoden im Rahmen eines virtuellen Screenings explizit berücksichtigt werden kann. Die Studie war auf der einen Seite hinsichtlich methodischer Aspekte von Interesse, da dadurch sowohl eine Beurteilung der Aussagekraft computergenerierter Proteinkonformationen, als auch eine Überprüfung der prinzipiellen Eignung MD-generierter Enzymkonformationen als Template für strukturbasierten Ligandendesignstudien, erfolgen konnte. Auf der anderen Seite war diese Studie aufgrund einer möglichen Erweiterung des bekannten Konformationsraumes der AR auch aus strukturbiologischer Sicht von Interesse. Bei der Suche nach geeigneten Liganden in Moleküldatenbanken kommerziell erhältlicher Verbindungen wurde eine protein- und eine ligandbasierte Strategie verfolgt. Im Rahmen des proteinbasierten Ansatzes erfolgte zunächst eine vergleichende Strukturanalyse verschiedener AR-Ligand-Komplexstrukturen, um Informationen hinsichtlich experimentell aufgeklärter Bindemotive, Protein-Ligand-Interaktionen sowie bestehender struktureller Differenzen zwischen der MD-Konformation und anderen Bindetaschenkonformationen der AR zu sammeln. Anschließend wurde die Bindetasche der MD-generierten Proteinstruktur hinsichtlich günstiger Interaktionspunkte analysiert, um aus den Erkenntnissen Pharmako-phormodelle als Filter für die nachfolgenden virtuellen Datenbanksuchen zu entwickeln. Als Ergänzung zum proteinbasierten Ansatz wurde eine ligandbasierte Strategie für die Identifizierung potenzieller Kandidatenmoleküle verfolgt. Dabei diente ein bekannter AR-Inhibitor als Templatstruktur, bei dem aufgrund zuvor durchgeführter Dockingexperimente die begründete Annahme bestand, dass dieser die Bindetaschenform der MD-Proteinkonfor-mation stabilisieren könnte. Hierbei wurde zunächst eine Moleküldatenbank aus kommerziell erhältlichen Verbindungen, die alle über eine bestimmte Substruktur als Ankergruppe verfügten, aufgebaut und anschließend durch Berechnung molekularer Ähnlichkeiten zu der Templatstruktur auf mögliche Kandidatenmoleküle durchsucht. Die virtuell identifizierten Moleküle der beiden Ansätze wurden im Anschluss mit Hilfe von Dockingsimulationen in die Bindetasche der MD-generierten Proteinkonformation gedockt und die berechneten Bindeposen mit einem Re- und Consensus-Scoringverfahren bewertet. Im nächsten Schritt erfolgte eine Untersuchung der Selektivität der Kandidatenmoleküle anhand eines Cross-Dockingexperiments an verschiedenen Bindetaschenkonformationen der AR. Auf der Grundlage aller durch das virtuelle Screeningverfahren gesammelten Informationen wurde eine finale Molekülauswahl getroffen und sechs kommerziell verfügbare Moleküle für experimentelle Untersuchungen bezogen. Die experimentelle Bestimmung der Enzyminhibition wurde dabei von Kooperationspartnern mit Hilfe eines in vitro Assays untersucht. Aufgrund einer unzureichenden Löslichkeit von vier Substanzen unter den Assaybedingungen konnte lediglich das Inhibitionspotenzial von zwei Verbindungen untersucht werden. Eine der Verbindungen zeigte bemerkenswerterweise eine inhibitorische Aktivität im einstelligen mikromolaren Bereich. Eine finale Beurteilung, ob die Zielsetzung dieser Studie, eine neue computergenerierte Bindetaschenkonformation der AR experi-mentell zugänglich zu machen, durch die vorgeschlagenen Verbindungen erfüllt werden konnte, konnte zum Zeitpunkt der Anfertigung der Dissertation aufgrund ausstehender Kristallstrukturen der jeweiligen AR-Ligand-Komplexe nicht erfolgen und bleibt das Ziel zukünftiger Arbeiten. Die Studie zeigte jedoch deutlich, dass nicht nur experimentell aufgeklärte Proteinstrukturen sondern auch die Nutzung von mit Hilfe computerbasierter Verfahren, wie z.B. mittels MD Simulationen, berechneter Proteinkonformationen als Templatstrukturen für die Identifi-zierung neuer Liganden hilfreich sein kann und daher deren Verwendung für diese Zielsetzung ihre Berechtigung hat. Der zweite Teil der Arbeit handelt von der computergestützten Identifizierung nieder-molekularer Liganden einer neuen potenziellen Bindestelle der biologischen Zielstruktur Hitzeschockprotein 70 (Hsp70), als eine neuartige Klasse von Hsp70-Inhibitoren. Hsp70 spielt eine pathophysiologische Rolle bei verschiedenen Krebserkrankungen sowie diversen weiteren Erkrankungen, wie z.B. neurodegenerativen Erkrankungen und Infektions-krankheiten. Bei der neuen potenziellen Bindestelle, die im Rahmen der vorliegenden Arbeit näher untersucht wurde, handelte es sich um das Interdomäneninterface, der Schnittstelle zwischen der Nukleotid- und Substratbindedomäne von Hsp70. Zum Zeitpunkt der Arbeit waren keine Liganden dieser Proteinregion in der Literatur beschrieben, weshalb es zunächst galt, die Hypothese der Adressierbarkeit dieser Zielregion durch niedermolekulare Liganden zu verifizieren. Hierfür wurde ein virtuelles Screening durchgeführt, bei dem protein- sowie ligandbasierte Suchstrategien zum Einsatz kamen. Im Rahmen des proteinbasierten Ansatzes erfolgte zunächst eine Analyse der Hsp70 Tertiär-struktur auf potenziell vorhandene Ligandenbindestellen. Im Anschluss wurde das Interdomäneninterface auf günstige Interaktionspunkte für bestimmte Atomtypen und funktionelle Gruppen zukünftiger Liganden untersucht. Basierend auf diesen Informationen wurde ein Pharmakophormodell als Filter für nachfolgende virtuelle Datenbanksuchen entwickelt. Bei dem ligandbasierten Ansatz fungierte der bekannte Hsp70-Ligand Apoptozol als Templatstruktur für die virtuelle Datenbanksuche, da die Ergebnisse eines vorab durchge-führten Cross-Dockingexperiments deutlich auf eine Bindung des Moleküls an das Interdomäneninterface hinwiesen. Diese Dockingstudie lieferte erste wertvolle Hinweise hinsichtlich der Bindestelle und potenzieller Bindemodi des Moleküls an Hsp70. Im Anschluss an die virtuellen Datenbanksuchen wurden die identifizierten Kandidaten-moleküle hinsichtlich möglicher Bindemodi und Bindungsaffinitäten mittels Docking-simulationen in Verbindung mit einem Re- und Consensus-Scoringverfahren untersucht. Abschließend wurden neun ausgewählte Kandidatenmoleküle von kommerziellen Anbietern bezogen und mit Hilfe von in vitro Assays von Kooperationspartnern innerhalb der Klinischen Forschergruppe 216 auf ihre zytotoxische Aktivität gegenüber Multiplen Myelomzellen untersucht. Dabei konnte für fünf der neun getesteten Verbindungen bereits bei Konzentrationen im ein- bzw. zweistelligen mikromolaren Bereich eine Aktivität gemessen werden, was einer formalen Trefferquote von 56% entspricht. Weiterhin wurde und wird in Folgearbeiten von Kooperationspartnern versucht, eine Bindung der ausgewählten Kandidatenmoleküle an Hsp70 näher zu charakterisieren und sowohl am separierten Protein, als auch in der Targetzelle nachzuweisen. Darüber hinaus wurde zusätzlich ein fragmentbasierter Ansatz, basierend auf einer bestimmten Substruktur, die als eine Art Ankergruppe fungieren sollte, verfolgt. Dabei diente bei der virtuellen Suche in Moleküldatenbanken kommerzieller Anbieter ein Molekülfragment als Suchanfrage. Aus dem identifizierten Molekülsatz wurden Verbindungen unterschied-lichster struktureller Klassen für nachfolgende Dockingexperimente ausgewählt. Die berechneten Bindeposen wurden einem Re-Scoringverfahren für eine zusätzliche Abschätzung der Bindungsaffinität unterzogen. Schließlich wurden die fünf vielver-sprechendsten Verbindungen für nachfolgende experimentelle Untersuchungen kommerziell bezogen. Die Ergebnisse der nachfolgenden röntgenkristallographischen Aufklärung der Protein-Ligand-Komplexe lagen bei der Anfertigung der vorliegenden Dissertation noch nicht abschließend vor und sind Bestandteil aktueller Forschungarbeiten. Mit den durchgeführten virtuellen Screeningverfahren konnten erstmals potenzielle Liganden des Hsp70-Interdomäneninterfaces als eine neuartige Klasse von Hsp70-Inhibitoren identifiziert werden. Weiterhin können die identifizierten, zytotoxisch aktiven Verbindungen als Leitstrukturen zukünftiger Inhibitordesignstudien dienen, mit dem Ziel sowohl die Zytotoxizität dieser Moleküle zu optimieren, als auch Struktur-Wirkungsbeziehungen für die Entwicklung von Inhibitoren mit verbesserten biologischen Aktivitätsprofilen abzuleiten. Ein weiterer Schwerpunkt der Arbeit lag auf der computerbasierten Charakterisierung der Proteinflexibilität von Hsp70 mit Hilfe von MD Simulationen. In diesem Zusammenhang erfolgte eine Untersuchung intrinsischer Proteinbewegungen sowie des Konformations-raumes anhand von verschiedenen Hsp70-Enzymstrukturen. Die durchgeführten MD Simulationen waren zum Zeitpunkt der Arbeit die ersten Untersuchungen dieser Art, die nicht nur an einer einzelnen Domäne, sondern an ganzen Zweidomänenstrukturen von Hsp70 erfolgten. Die generierten Trajektorien bestätigten die überdurchschnittlich hohe Flexibilität der Zielstruktur Hsp70. Die im Rahmen der Studie identifizierten, zum Zeitpunkt der Arbeit noch nicht beschriebenen Proteinkonformere erweiterten das Spektrum der bekannten Hsp70-Proteinkonformationen erheblich und lieferten mögliche Enzymkonformationen, die als Templatstrukturen für zukünftige strukturbasierte Wirkstoffdesignstudien dienen können. Darüber hinaus stützten die Beobachtungen die Hypothese der prinzipiellen Eignung des Interdomäneninterfaces von Hsp70 als eine Bindestelle für neue Inhibitoren. Auf der Grundlage der gewonnenen Informationen war es weiterhin möglich, eine erste Hypothese hinsichtlich eines potenziellen inhibitorischen Wirkmechanismus der Liganden des Interdomäneninterfaces zu formulieren. Abschließend lässt sich festhalten, dass durch die vorliegende Arbeit viele neue strukturbiologische Erkenntnisse über Hsp70 gewonnen wurden. Dennoch besteht weiterer Forschungsbedarf, um die Strukturbiologie von Hsp70 umfassend aufzuklären. Möglicher-weise können in zukünftigen Studien Enzymstrukturen aufgeklärt werden, die die Existenz der in silico erzeugten und in der Arbeit beschriebenen Proteinkonformere bestätigen. N2 - Proteins are dynamic macromolecular systems, natively existing in different conformations. Particularly proteins with a marked intrinsic flexibility serving as biological targets issue a challenge to computational structure-based drug design even today. This thesis addresses the computer-aided identification of new inhibitors of two structurally highly flexible enzymes which are playing a pathophysiological role in different diseases. Thus, the focus was on the development of virtual screenings that enable considering the protein flexibility adequately. The first part of this thesis describes a virtual screening aiming to identify ligands of a new protein conformation of aldose reductase (AR) that was generated by molecular dynamics (MD) simulations. AR is an enzyme that is related to secondary diseases of diabetes mellitus. The conducted strategy reveals possibilities how pronounced protein flexibility can explicitly be considered by computer-based methods within the scope of a virtual screening. On the one hand, the study was of special interest because of methodical aspects as both an assessment of the significance of computer-generated protein conformations and an examination of the suitability of MD-generated enzyme conformations as templates for structure-based ligand design studies could be made. On the other hand, the study was of interest with regard to structural biology due to a possible expansion of the known conformational space of the enzyme. The identification of suitable ligands out of a database of commercially available compounds was performed with the help of a protein-based as well as a ligand-based approach. During the protein-based approach a comparative structural analysis of different AR-ligand complexes was first done to collect information about experimentally elucidated binding motives, protein-ligand interactions and existing structural differences between the MD-conformation and other existing AR-binding pocket conformations. Afterwards, the binding pocket of the MD-generated protein structure was analysed with regard to favoured interaction sites. These findings served as basis for the development of pharmacophore models serving as a filter in subsequent in silico database screenings. In addition to the protein-based approach a ligand-based strategy was followed to identify potential candidate molecules. A well-known inhibitor of AR served as template structure. Based on previously conducted docking experiments one may assume that this compound might be able to stabilise the binding pocket of the MD-conformation. Consequently, a database of commercially available compounds all containing a certain substructure as anchor group was generated and feasible candidate molecules were searched via calculation of molecular similarities between database molecules and the template structure. All identified compounds were subsequently docked into the binding pocket of the MD-generated protein conformation and predicted binding poses were assessed by a re- and consensus scoring procedure. In the next step selectivity investigations at different AR binding pocket conformations were performed on the basis of a cross-docking experiment. In accordance with all information received during the virtual screening process a final compound selection was made and six commercially available molecules were ordered for further experimental analyses. These experiments were performed by cooperation partners using a well established in vitro assay. As a result of an insufficient solubility of four compounds under the assay conditions, the inhibitory potency of only two molecules could be determined. Remarkably, one compound showed an inhibitory activity at a one-digit micromolar concentration. However, as crystal structures of the particular AR-ligand complexes were pending at the time of preparing the thesis, it was not possible to finally conclude whether the purpose of this study to make a new computationally generated binding pocket conformation of AR experimentally accessible could be achieved. This task remains the aim of future projects. The study clearly demonstrated that not only the use of experimentally elucidated protein structures as template structures can be useful for the identification of new ligands but also the use of structures generated by computer-based procedures like MD simulations. The second part of this thesis is about the computer-aided identification of small ligands of a new potential binding site of the biological target heat shock protein 70 (Hsp70), as a novel Hsp70 inhibitor class. Hsp70 plays a pathophysiological role in different cancer diseases and other diseases such as neuro-degenerative disorders and infectious diseases. The interdomain interface between the nucleotide and the substrate binding domain of Hsp70 represents the new potential binding site and was comprehensively investigated as part of the present thesis. At the time of the study no ligand of this protein region was described in the literature. Thus, the hypothesis whether the target site represents an addressable binding site was needed to be proven by small ligands. For this purpose a virtual screening was conducted by using both protein- and ligand-based search strategies. During the protein-based approach, the tertiary structure of Hsp70 was analysed with regard to potentially existing ligand binding sites. Subsequently, the interdomain interface was scanned to identify favourable interaction sites of specific atom types and functional groups of future ligands. Based on the gathered information a pharmacophore model was developed, serving as a query in following in silico database screenings. The known Hsp70 ligand Apoptozol was of use as template structure for virtual database screenings as results of a previously performed cross-docking experiment indicated that the molecule binds to the interdomain interface. The study provided initial valuable hints about the binding site and potential binding modes of the molecule at Hsp70. After database screenings the identified candidate molecules were tested with regard to their possible binding modes and binding affinities by docking simulations combined with a re- and a consensus scoring procedure. Finally, nine selected compounds were purchased from commercial suppliers and their cytotoxic activity towards multiple myeloma cells was tested in an in vitro assay by cooperation partners of the clinical research group 216. Thereby, five out of nine tested compounds showed a cytotxic activity at one- to two-digit micromolar concentrations, resulting in a formal hit rate of 56%. Ongoing research projects are being made to further characterise the binding of the chosen molecules to Hsp70 and to verify the binding to both the isolated protein and the protein inside the target cells. Furthermore, a fragment-based approach was followed based on a specific substructure that might be serving as an anchor group for a targeted binding to the interdomain interface. A molecular fragment served as query during the virtual search in several compound databases of commercial suppliers. Out of the resulting molecule collection, only members of different, most diverse structural classes were chosen for subsequent docking experiments. As a next step, the calculated binding poses were submitted to a re-scoring procedure to verify the particular binding affinities. Finally, the five most promising compounds were purchased for further experimental analyses. The results of the X-ray crystallography to determine the respective protein-ligand complexes were not finally available at the time of preparing the present thesis and related experiments are still the subject of current research work. With the performed virtual screenings it was possible for the first time to identify potential ligands of the Hsp70 interdomain interfaces as a novel class of Hsp70 inhibitors. Further on, the identified, cytotoxic active compounds might serve as lead structures in future inhibitor design studies that aim to optimise the cytoxicity of these molecules as well as to deduce structure-activity relationships from ligand series for the development of inhibitors that have more favourable biological activity profiles. Another emphasis of the thesis was on the computer-based characterisation of the protein flexibility of Hsp70 with the help of MD simulations. In this context an analysis of intrinsic protein dynamics together with the conformational space was done on the basis of different Hsp70 enzyme structures. At the time of the work, the conducted MD simulations were the first of this type which addressed Hsp70 two-domain-structures instead of structures of separated protein domains. Thus, this thesis provided initial insights into potential intrinsic protein movements. The evaluation of the generated trajectories confirmed the high flexibility of Hsp70. Thereby, at the time of the study so far unknown protein conformations could be identified that considerably expanded the spectrum of known Hsp70 protein conformations and proposed possible enzyme conformations that might be used as template structures for future structure-based drug design studies. Furthermore, the observations supported the hypothesis that the Hsp70 interdomain interface may principally be suitable as a binding site for new inhibitors. In the light of all this information, it was possible to postulate a first hypothesis about a potential mechanism of action of an enzyme inhibition by ligands of the interdomain interface. In summary, the present thesis revealed various aspects with regard to the structural biological elucidation of Hsp70. Nevertheless, structural analyses of Hsp70 will be ongoing in the future. It might be possible that in future studies enzyme structures will be identified that confirm the existence of the in silico generated protein conformers, described in the present thesis. KW - Arzneimittelforschung KW - Hitzeschock-Proteine KW - Enzyminhibitor KW - Molekulardesign KW - Strukturbasiertes Wirkstoffdesign KW - molekulardynamische Simulationen KW - virtuelles Screening KW - structure-based drug design KW - molecular dynamics KW - virtual screening Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147103 ER - TY - THES A1 - Merget, Benjamin T1 - Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall T1 - Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand N2 - \textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. N2 - \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen. KW - Computational chemistry KW - Arzneimitteldesign KW - Molekulardynamik KW - Permeabilität KW - Tuberkelbakterium KW - Computational drug-design KW - steered molecular dynamics KW - molecular dynamics KW - residence time KW - mycobacterium tuberculosis KW - staphylococcus aureus KW - permeability KW - InhA KW - FabI KW - Enoyl-acyl-carrier-protein-Reductase KW - Drug design KW - Computational chemistry Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127386 ER - TY - JOUR A1 - Capra, Valérie A1 - Busnelli, Marta A1 - Perenna, Alessandro A1 - Ambrosio, Manuela A1 - Accomazzo, Maria Rosa A1 - Galés, Celine A1 - Chini, Bice A1 - Rovati, G. Enrico T1 - Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation JF - PLoS ONE N2 - The intrahelical salt bridge between \(E/D^{3.49}\) and \(R^{3.50}\) within the E/DRY motif on helix 3 (H3) and the interhelical hydrogen bonding between the E/DRY and residues on H6 are thought to be critical in stabilizing the class A G protein-coupled receptors in their inactive state. Removal of these interactions is expected to generate constitutively active receptors. This study examines how neutralization of \(E^{3.49/6.30}\) in the thromboxane prostanoid (TP) receptor alters ligand binding, basal, and agonist-induced activity and investigates the molecular mechanisms of G protein activation. We demonstrate here that a panel of full and partial agonists showed an increase in affinity and potency for E129V and E240V mutants. Yet, even augmenting the sensitivity to detect constitutive activity (CA) with overexpression of the receptor or the G protein revealed resistance to an increase in basal activity, while retaining fully the ability to cause agonist-induced signaling. However, direct G protein activation measured through bioluminescence resonance energy transfer (BRET) indicates that these mutants more efficiently communicate and/or activate their cognate G proteins. These results suggest the existence of additional constrains governing the shift of TP receptor to its active state, together with an increase propensity of these mutants to agonist-induced signaling, corroborating their definition as superactive mutants. The particular nature of the TP receptor as somehow "resistant" to CA should be examined in the context of its pathophysiological role in the cardiovascular system. Evolutionary forces may have favored regulation mechanisms leading to low basal activity and selected against more highly active phenotypes. KW - coupled receptor KW - ligand binding KW - intracellular loop KW - molecular dynamics KW - Beta(1)-adrenergic receptor KW - ionic look KW - Beta(2)-adrenergic receptor KW - crystal structure KW - constitutive activity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131013 VL - 8 IS - 3 ER -