TY - JOUR A1 - Rudno-Rudziński, W. A1 - Syperek, M. A1 - Andrezejewski, J. A1 - Maryński, A. A1 - Misiewicz, J. A1 - Somers, A. A1 - Höfling, S. A1 - Reithmaier, J. P. A1 - Sęk, G. T1 - Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 μm emission JF - AIP Advances N2 - We have investigated optical properties of hybrid two-dimensional-zero-dimensional (2D-0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm-width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum-mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed-type 2D-0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time-resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight-band k·p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures. KW - physics KW - surface collisions KW - electronic coupling KW - transition radiation KW - time-resolved photoluminescence KW - photoluminescence excitation KW - modulation spectroscopy KW - quantum dots KW - quantum wells KW - delocalization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181787 VL - 7 IS - 1 ER - TY - JOUR A1 - Ryczko, K. A1 - Misiewicz, J. A1 - Hofling, S. A1 - Kamp, M. A1 - Sęk, G. T1 - Optimizing the active region of interband cascade lasers for passive mode-locking JF - AIP Advances N2 - The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into “W-shaped” type II QWs offers significant difference in optical transitions’ oscillator strengths (characteristic lifetimes) of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices. KW - physics KW - electrostatics KW - transition radiation KW - oscillator strengths KW - laser spectroscopy KW - optical spectroscopy KW - atomic and molecular spectroscopy, KW - frequency combs KW - quantum wells KW - laser physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181790 VL - 7 IS - 1 ER - TY - JOUR A1 - Cerna-Velazco, Nhell A1 - Faber, Thomas A1 - Jones-Pérez, Joel A1 - Porod, Werner T1 - Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario JF - European Physical Journal C N2 - We consider a scenario inspired by natural supersymmetry, where neutrino data is explained within a low-scale seesaw scenario. We extend the Minimal Supersymmetric Standard Model by adding light right-handed neutrinos and their superpartners, the R-sneutrinos, and consider the lightest neutralinos to be higgsino-like. We consider the possibilities of having either an R-sneutrino or a higgsino as lightest supersymmetric particle. Assuming that squarks and gauginos are heavy, we systematically evaluate the bounds on slepton masses due to existing LHC data. KW - physics KW - particle physics KW - neutrino KW - R-sneutrino KW - supersymmetry (SUSY) KW - supersymmetric model KW - standard seesaw KW - inverse seesaw KW - minimal supersymmetric standard model (MSSM) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173809 VL - 77 ER - TY - JOUR A1 - Bisti, F. A1 - Rogalev, V. A. A1 - Karolak, M. A1 - Paul, S. A1 - Gupta, A. A1 - Schmitt, T. A1 - Güntherodt, G. A1 - Eyert, V. A1 - Sangiovanni, G. A1 - Profeta, G. A1 - Strocov, V. N. T1 - Weakly-correlated nature of ferromagnetism in nonsymmorphic CrO\(_2\) revealed by bulk-sensitive soft-X-ray ARPES JF - Physical Review X N2 - Chromium dioxide CrO\(_2\) belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is that they act as a metal in one spin orientation and as a semiconductor or insulator in the opposite one. Despite numerous experimental and theoretical studies motivated by technologically important applications of this material in spintronics, its fundamental properties such as momentumresolved electron dispersions and the Fermi surface have so far remained experimentally inaccessible because of metastability of its surface, which instantly reduces to amorphous Cr\(_2\)O\(_3\). In this work, we demonstrate that direct access to the native electronic structure of CrO\(_2\) can be achieved with soft-x-ray angle-resolved photoemission spectroscopy whose large probing depth penetrates through the Cr\(_2\)O\(_3\) layer. For the first time, the electronic dispersions and Fermi surface of CrO\(_2\) are measured, which are fundamental prerequisites to solve the long debate on the nature of electronic correlations in this material. Since density functional theory augmented by a relatively weak local Coulomb repulsion gives an exhaustive description of our spectroscopic data, we rule out strong-coupling theories of CrO\(_2\). Crucial for the correct interpretation of our experimental data in terms of the valence-band dispersions is the understanding of a nontrivial spectral response of CrO\(_2\) caused by interference effects in the photoemission process originating from the nonsymmorphic space group of the rutile crystal structure of CrO\(_2\). KW - physics KW - electronic structure KW - half-metals KW - angle-resolved photoemission spectroscopy KW - band structure methods KW - DFT+U KW - condensed matter physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172251 VL - 7 IS - 4 ER - TY - JOUR A1 - Skryabin, D.V. A1 - Kartashov, Y.V. A1 - Egorov, O.A. A1 - Sich, M. A1 - Chana, J.K. A1 - Tapia Rodriguez, L.E. A1 - Walker, P.M. A1 - Clarke, E. A1 - Royall, B. A1 - Skolnick, M.S. A1 - Krizhanovskii, D.N. T1 - Backward Cherenkov radiation emitted by polariton solitons in a microcavity wire JF - Nature Communications N2 - Exciton-polaritons in semiconductor microcavities form a highly nonlinear platform to study a variety of effects interfacing optical, condensed matter, quantum and statistical physics. We show that the complex polariton patterns generated by picosecond pulses in microcavity wire waveguides can be understood as the Cherenkov radiation emitted by bright polariton solitons, which is enabled by the unique microcavity polariton dispersion, which has momentum intervals with positive and negative group velocities. Unlike in optical fibres and semiconductor waveguides, we observe that the microcavity wire Cherenkov radiation is predominantly emitted with negative group velocity and therefore propagates backwards relative to the propagation direction of the emitting soliton. We have developed a theory of the microcavity wire polariton solitons and of their Cherenkov radiation and conducted a series of experiments, where we have measured polariton-soliton pulse compression, pulse breaking and emission of the backward Cherenkov radiation. KW - physics KW - polaritons KW - solitons Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173046 VL - 8 ER - TY - JOUR A1 - Tuan, Dinh Van A1 - Scharf, Benedikt A1 - Žutič, Igor A1 - Dery, Hanan T1 - Marrying excitons and plasmons in monolayer transition-metal dichalcogenides JF - Physical Review X N2 - Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe\(_2\) and WS\(_2\) but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers. KW - physics KW - excitons KW - plasmons KW - semiconductors KW - spintronics KW - valleytronics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173030 VL - 7 IS - 4 ER - TY - JOUR A1 - Sánchez, Rafael A1 - Thierschmann, Holger A1 - Molenkamp, Laurens W. T1 - Single-electron thermal devices coupled to a mesoscopic gate JF - New Journal of Physics N2 - We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron–electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations. KW - physics KW - quantum dot KW - heat currents KW - thermal devices KW - single-electron tunneling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172982 VL - 19 ER - TY - JOUR A1 - Tymoshenko, Y. V. A1 - Onykiienko, Y. A. A1 - Müller, T. A1 - Thomale, R. A1 - Rachel, S. A1 - Cameron, A. S. A1 - Portnichenko, P. Y. A1 - Efremov, D. V. A1 - Tsurkan, V. A1 - Abernathy, D. L. A1 - Ollivier, J. A1 - Schneidewind, A. A1 - Piovano, A. A1 - Felea, V. A1 - Loidl, A. A1 - Inosov, D. S. T1 - Pseudo-Goldstone magnons in the frustrated \(S=3/2\) Heisenberg helimagnet \(ZnCr_2Se_4\) with a pyrochlore magnetic sublattice JF - Physical Review X N2 - Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet \({ZnCr_2Se_4}\) with a cubic spinel structure, in which spin\(-3/2\) magnetic \({Cr^{3+}}\) ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the \((0~ 0~ {q_h})\) ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of \({∼0.17~ meV}\), emerging from two orthogonal wave vectors \(({q_h}~ 0~ 0)\) and \({(0~ {q_h}~ 0)}\) where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spinwave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods. KW - physics KW - spin waves KW - helimagnets KW - inelastic neutron scattering Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172770 VL - 7 IS - 4 ER - TY - JOUR A1 - Elsässer, S. A1 - Schiebl, M. A1 - Mukhin, A. A. A1 - Balbashov, A. M. A1 - Pimenov, A. A1 - Geurts, J. T1 - Impact of temperature-dependent local and global spin order in \(R\)MnO\(_3\) compounds for spin-phonon coupling and electromagnon activity JF - New Journal of Physics N2 - The orthorhombic rare-earth manganite compounds \(R\)MnO\(_3\) show a global magnetic order for \(T\) < \(T\)\(_N\), and several representatives are multiferroic with a cycloidal spin ground state order for \(T\) < \(T\)\(_c\)\(_y\)\(_c\)\(_l\) < \(T\)\(_N\) \(\approx\) 40 K. We deduce from the temperature dependence of spin–phonon coupling in Raman spectroscopy for a series of \(R\)MnO\(_3\) compounds that their spin order locally persists up to about twice \(T\)\(_N\). Along the same line, our observation of the persistence of the electromagnon in GdMnO\(_3\) up to \(T\) \(\approx\) 100 K is attributed to a local cycloidal spin order for \(T\) > \(T\)\(_c\)\(_y\)\(_c\)\(_l\), in contrast to the hitherto assumed incommensurate sinusoidal phase in the intermediate temperature range. The development of the magnetization pattern can be described in terms of an order–disorder transition at \(T\)\(_c\)\(_y\)\(_c\)\(_l\) within a pseudospin model of localized spin cycloids with opposite chirality. KW - physics KW - RMnO3 KW - multiferroics KW - electromagnon KW - Raman spectroscopy KW - spin-phonon coupling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171978 VL - 19 ER - TY - JOUR A1 - Pollinger, Florian A1 - Schmitt, Stefan A1 - Sander, Dirk A1 - Tian, Zhen A1 - Kirschner, Jürgen A1 - Vrdoljak, Pavo A1 - Stadler, Christoph A1 - Maier, Florian A1 - Marchetto, Helder A1 - Schmidt, Thomas A1 - Schöll, Achim A1 - Umbach, Eberhard T1 - Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces JF - New Journal of Physics N2 - Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self- organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress. We demonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775)surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by highresolution electron diffraction, the microscopic surface morphology changes are followed by spectromicroscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation. KW - physics KW - patterning KW - reconstruction KW - surface stress KW - STM KW - SPA-LEED KW - vicinal surfaces KW - adsoption Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171947 VL - 19 ER -