TY - THES A1 - Baumann, Andreas T1 - Charge Transport and Recombination Dynamics in Organic Bulk Heterojunction Solar Cells T1 - Ladungstransport und Rekombination in organischen Heterogemisch-Solarzellen N2 - The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as "Time-of-Flight" (TOF)), as well as the transient charge extraction technique of "Charge Carrier Extraction by Linearly Increasing Voltage" (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics, i.e. charge transport and charge carrier recombination, in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are studied in view of the charge carrier transport and recombination dynamics. Finally, within the framework of this work the technique of photo-CELIV is improved. With the modified technique it is now feasible to study the mobility and lifetime of charge carriers in organic solar cells under operating conditions. N2 - Der Ladungstransport in ungeordneten organischen "bulk heterojunction" (Heterogemisch, Abk.: BHJ) Solarzellen stellt einen kritischen Prozess dar, der den Wirkungsgrad wesentlich beeinflusst. Aufgrund der großen Nachfrage neuer, vielversprechender Materialien für die organische Photovoltaik, ist es um so wichtiger nicht nur ihre photophysikalischen sondern auch deren elektrischen Eigenschaften zu charakterisieren. Gerade letztere erfordern experimentelle Messmethoden, die an funktionsfähigen Solarzellen angewandt werden können. Zur experimentellen Untersuchung des Landungstransportes in organischen Solarzellen werden in dieser Arbeit die Methoden der transienten Photoleitfähigkeit, auch bekannt als "Time-of-Flight" (TOF), sowie die transiente Ladungsextraktionsmethode "Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) verwendet. Gerade Letztere ermöglicht es an Dünnschichtsystemen von nur wenigen 100 nm, eine typische Schichtdicke bei organischen Solarzellen, den Ladungstransport aber auch die Rekombination von Elektronen und Löchern zu untersuchen. Entscheidend für eine vielversprechende funktionsfähige organische BHJ Solarzelle ist dabei eine günstige Morphologie, die eine effiziente Generation von Ladungsträger, sowie deren Abführung zu den Elektroden erlaubt. Dabei wird in dieser Arbeit der Einfluss der räumlichen, als auch der der energetischen Unordnung der photoaktiven Schicht auf den Ladungstransport und der Rekombination der Ladungsträger untersucht. Das weit verbreitete Materialsystem bestehend aus Poly-3-(Hexyl) Thiophen (P3HT) und [6,6]-Phenyl C61 Buttersäure Methylester (PC61BM) dient dabei als Donator-Akzeptor Referenzsystem. Neuartige Donator- bzw. Akzeptor-Materialien und deren Potential für künftige Anwendungen in der organischen Photovoltaik werden hinsichtlich ihrer Ladungsträgereigenschaften mit dem Referenzmaterialsystem verglichen. Im Zuge der Kommerzialisierung organischer Solarzellen bzw. Solarmodulen ist die Anfälligkeit der Zellen gegenüber äußeren Umwelteinflüssen, wie Sauerstoff oder Wasser, in den Vordergrund des wissenschaftlichen Interesses gerückt. Dementsprechend wird in dieser Arbeit auch der Einfluss von synthetischer Luft auf den Transport und die Rekombination von Ladungsträgern und somit auf den Wirkungsgrad der Solarzelle untersucht und diskutiert. Schließlich wird im Rahmen dieser Arbeit eine Erweiterung der photo-CELIV Messmethode vorgestellt. Diese ermöglicht es die Lebensdauer und den Transport von Ladungsträgern in organischen Dünnschicht-Solarzellen unter realen Arbeitsbedingungen, d.h. Beleuchtung unter einer Sonne bei Raumtemperatur, zu bestimmen. KW - Photovoltaik KW - Ladungstransport KW - Rekombination KW - organische Photovoltaik KW - Ladungsträgerrekombination KW - photo-CELIV KW - organic solar cells KW - organic semicondcutors KW - recombination KW - photo-CELIV Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64915 ER - TY - JOUR A1 - Kiermasch, David A1 - Fischer, Mathias A1 - Gil-Escrig, Lidón A1 - Baumann, Andreas A1 - Bolink, Henk J. A1 - Dyakonov, Vladimir A1 - Tvingstedt, Kristofer T1 - Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment JF - Solar RRL N2 - The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley–Read–Hall recombination rates. KW - defects KW - heating KW - lifetimes KW - passivation KW - perovskite solar cells KW - recombination KW - Shockley–Read–Hall Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258003 VL - 5 IS - 11 ER -